

21-23 October 2013
Workshop GreenGrowing

Energy Efficiency in Greenhouses

Jack Verhoosel

Contents

- 1. Flexibility in energy demand and supply
- 2. Flexibility in greenhouse energy management
- 3. Greenhouse intelligent energy management app

Uncertainty of Renewables

- Weather conditions determine amount of energy
- Uncertainty in weather pattern
- Uncertainty in energy supply from RES has to be taken into account in scheduling

From Consumer to Prosumer

- Increasing amount of "own" RES energy supply of households
- Surplus of energy supply of households provided to smart grid

Flexible Energy Demand

- Dishwasher and washing machine can flexibly run overnight
- Electric vehicle can be charged flexibly during parking interval

Energy Profile Flexibilities

b) power

c) duration

d) energy

- Flexibilities are expressed in terms of constraints on an energy profile.
- Profile elements can have constraints on their power, energy and time.

Greenhouses as Flexible Prosumers

- > CHP requires gas and produces heat, CO2 and electricity
- Depending on greenhouse product climate requirements and wheather CHP can be used flexibly

Flexibility in production/growth curve

- Flexibility is possible in the production/growth curve.
- Thus, flexibility in climate parameters (temp, light, CO2, humidity)
- Use this flexibility for optimal energy trading

Scope and focus in GreenGrowing

- Finetune flexibility concept for greenhouse energy demand and supply
 => work out the flexibility possibilities in more detail
- Derive flexibility profiles based on existing and (possibly also) new production/growth models
- Develop energy management component that matches flexibilities and supports decision making for energy trading
- Combined **information provisioning** on greenhouse climate, product flexibility, weather conditions and energy markets.
- The developed component/system enables greenhouse controllers and energy companies to balance energy demand and supply in near real-time.

- App on tablet to combine all possible inputs a grower / greenhouse energy manager needs (Android, Windows, iPad)
- > First focus on information provisioning to grower/energymanager
 - No decision support yet
- > Combines existing information sources on:
 - Greenhouse current and near future climate parameters (temp, light, CO2, humidity)
 - Energy markets (day-ahead, intra-day, imbalance, OTC)
 - Wheather channels (as local as possible)

Workshop GreenGrowing

Workshop GreenGrowing

Further developments

Further development of the app:

- Connection with data from a Priva climate computer:
 - Real-time current parameter settings and monitoring
 - Near-future settings (e.g. next week)
- Integration or coupling with Dynalight module for flexible lighting
- Integration or coupling with tools for energy trading (e.g. Powerhouse)

Flexibility profiles based on production/growth models
Pricing strategies of greenhouse "owner"
Trading advice for greenhouse energy manager

PowerMatcher is an approach for supply / demand management which defines a multi-agent system wherein agents interact as in a real-time market

◄ TERUG

POWERMATCHER CONTROLLER

Market Price € 0,00

Last bid 5:47:48 PM CEST

Storage Agent [-1500.0, 0.0, 1500.0] W

Uncontrolled Agent [-1519.0] W

SMARTPV PANEL

17:47:50 Supply at **Power Output** 1519 Watt

STORAGE DEVICE MANAGER

State of charge 53% Total capacity 1,0 kWh Current mode CHARGE

INRGBOX CONNECTED MICROCHP

Room 21.8

Temperature Target Temperature

Kwh Produced 247.13

AppStore

•

Settings