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Introduction 

In this study we investigate the complexities of scheduling deliveries from a number of storage points 

to  locations with demand. The study  is  inspired by  the situation at  ITRACT project partner Alliance 

Healthcare.   Products  (in  the  case of Alliance Healthcare: medicines) are available at one or more 

distribution centers. These products need to go to individual consumers (patients). A number options 

exist and must be chosen from, which  is known as multi‐channeling. For example, products may be 

shipped from a distribution center to a store (pharmacy), where the consumer comes to pick up the 

product. Or products may be home delivered  to  consumers  from either  the distribution  center or 

from  a  nearby  store.  Furthermore,  Alliance  Healthcare  is  investigating  options  for  self‐service 

unmanned lockers, where patients can pick up medicines.  

Numerous arguments play a role  in selecting the right channel for getting products delivered. First, 

costs are an  important  factor, especially  for commercial companies. However, other  factor may be 

equally or more  important, depending on  the application. For example,  if  instead of products, we 

need transportation for people, factors timing and comfort (e.g., fewer stops) are vital. Sustainability 

of  the  operation  is  a  crucial  concern  as well.    Sustainable  transport  options  for  both  people  and 

freight flows are the key factor for economic success. Part of the ITRACT project aims at developing 

incentivizing and  scheduling  strategies  to  influence  consumers’ demand  towards more  sustainable 



and  less  resource  intensive  transport  options,  which  can  be  a  great  stimulation  for  users  and 

suppliers and are  therefore an  important  indicator  for  the success of  the models. This  is especially 

true for sparcely populated areas in the North Sea Region. In this context understanding the price of 

offering  certain  services,  such  as  a  delayed  pick‐up  and/or  arrival  is  key  to  dynamic  pricing  of 

transport features. It is in this area that this paper makes a contribution by creating models that can 

be used to determine pricing trade‐off effects. 

More  technically  formulated, we  consider a number of  locations with  inventories of products  (for 

example,  libraries with books, or pharmacies with medicines). And consider customers with known 

demand  for  products.  A  number  of  vehicles,  with  given,  diverse  home  bases,  are  available  for 

transporting products. Vehicle capacity does not  impose  limits  in practice, but there  is a maximum 

travel time per vehicle. The objective is to minimize transportation costs, under the condition that as 

much demand must be fulfilled as possible. That is, if total supply suffices for total demand, then all 

demand will be met. This model will thus  include home delivery  in the most economical way  in the 

scheduling of daily operations.  

Three models have been created, programmed and tested for the described situation. These models 

can be helpful  in other work projects of  ITRACT  in determining additional cost parameters, and  to 

provide insights in the logistics costs of sustainability or service choices. 

In Chapter 1, we present an Iterated Local Tabu search. Chapter 2 gives a Hybrid Genetic Search 

method, and Chapter 3 provides a Variable Neighborhood Search method. The three methods each 

have their advantages and disadvantages when applied to the problem at hand. The Iterated Local 

Tabu Search method shows some underperformance when compared to the other two methods, 

which may be further improved upon in the future by adding a single‐route improvement 

neighborhood, such as k‐opt, and by tuning parameters on a more extended test set. The hybrid 

Genetic Search method appears to work well, though computation times limit scalability of the 

algorithm. The Variable Neighborhood Search algorithm also provides good results. Table 1 provides 

an overview of results of the three methods. Details on the mathematics, results, literature and 

experiments can be found in the three chapters. 

Average All 
Instances

Average Small 
Instances Feasible 

#  best 
solution

Iterated Local Tabu Search (Chapter 1)  1003.03 769.55 922  65

Hybrid Genetic Search (Chapter 2)  909.73 729.18 984  781

Variable Neighborhood Search (Chapter 3)  977.60 760.37 1000  155
Table 1. Comparison of results of three algorithms for the multi‐depot vehicle routing variant.  

The first column of Table 1 provides average route length across all instances tested, and thus gives 

an indicator for overall performance (lower is better). The second column provides the  average 

route length across 310 smallest instances, and gives an indicator for performance across the 

"easier" instances. The third column provides a counter for the number of times the algorithm 

succeeded in finding a feasible solution to the problem, where 1000 indicates a perfect score (higher 

is better). The last column provides a counter for the number of times the algorithm found a solution 

that is equal to or better than the other two algorithms. 
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1 Introduction

Many companies have to solve problems considering finding a route from one place to another. Con-
sider for example a company which delivers goods to their customers at home, and a waste processing
company having garbage trucks picking up garbage at certain places. Or think of a postman who
has to deliver the mail. Beforehand, the order in which customers are visited is not given. There
are many possible routes these trucks can drive, but often the costs increase as the route becomes
longer. Therefore, the problem is to find the shortest route, starting at the company, passing all the
customers and then returning to the company. There are also companies with multiple storehouses
from where the customers are served. Now the problem becomes more difficult because it is not certain
which customer should be served from which storehouse in the optimal way. Another extension of the
general problem is that there is not one product that has to be delivered, but that there are multiple
products distributed over multiple storehouses.

The Vehicle Routing Problem (VRP) as introduced by Dantzig and Ramser (1959) deals with the
design of an optimal set of routes for a fleet of vehicles from a central depot in order to serve a given
set of customers. It is one of the most widely studied problems in Operations Research. Many gener-
alizations of the VRP exist, among these is the Multi-Depot Vehicle Routing Problem (MDVRP) in
which multiple depots together have to satisfy total customer demand by optimally dividing deliveries
and designing the corresponding vehicle routes. Other examples of generalizations of the VRP are
the VRP with time windows, where the delivery has to be within a certain time interval; the capaci-
tated VRP, where the vehicles have a limited capacity of cargo space; the periodic VRP, where each
customer has to be visited a certain number of times in a horizon of T time units and the VRP with
pickup and delivery, where vehicles need to pickup items at some locations which have to be delivered
at other locations. Combinations of these generalizations are possible.

As an NP-hard problem (see Lenstra and Kan, 1981), large instances of the VRP and its gener-
alizations are hardly solved to optimality and heuristics are commonly used in practice. There are
several recent well performing (meta-)heuristic approaches. Pisinger and Ropke (2007) transform var-
ious generalizations of the VRP into a pickup and delivery model and solve it with an adaptive large
neighborhood search framework. Variable neighborhood search (Hemmelmayr et al., 2009) uses an it-
erative improvement algorithm with multiple neighborhoods. Ant colony optimization is based on the
food seeking process of ant colonies, where the MDVRP is solved using a virtual central depot which
corresponds to the nest, the original depots correspond to the entries of the nest and the customers
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correspond to food. Yu et al. (2011) developed a parallel improved ant colony optimization heuris-
tic with a coarse-grain strategy. Parallel iterated tabu search is used by Cordeau and Maischberger
(2012) for multiple variants of the VRP. The hybrid genetic algorithm from Vidal et al. (2012) uses
new population-diversity management mechanisms to allow a broader access to reproduction, while
preserving the characteristics of elite solutions.

Common assumptions in literature are unlimited depot supply and a demand for a homogeneous good,
whereas in practice it is easy to imagine these assumptions will fail to hold. In this paper we relax
these assumptions and develop an iterated local tabu search heuristic for the multi-product MDVRP
with limited depot supply and test its performance on a set of 1000 problem instances.

The layout of the article is as follows. In Section 2 we formulate the mathematical model and in
Section 3 we will go over our solution approach. The Iterated Local Search Heuristic will be explained
in Section 4. After that, in Section 5 the values of the parameters are determined and the results are
shown in Section 6. The conclusion can be found in Section 7.

2 Problem Formulation

We define the MDVRP on a complete graphG = (V,E) with the vertex set V = {v1, . . . , vt, vt+1, . . . , vt+n}
consisting of t depots and n customers, and the edges E = {(vi, vj) : vi, vj ∈ V }. Associated with the
edges is a cost function c : E → R+ representing the costs of traversing edge e ∈ E. We represent all
vertices by their Euclidean coordinates and correspondingly let cij = c(vi, vj) = ‖vi−vj‖, the Euclidean
distance between vi and vj . Vertex i has a given demand Qhi ≥ 0 for product h ∈ {1, . . . , p} and, as
only customers can demand products, Qhi = 0 for i ∈ {1, . . . , t}. Furthermore, depot ` ∈ {1, . . . , t}
has a given limited supply Sh` ≥ 0 of product h. We assume that total depot supply is sufficient to
meet total customer demands for each product, i.e.,

∑t
`=1 Sh` ≥

∑t+n
i=t+1Qhi for all products h. In

Figure 1 an instance of the MDVRP is shown.

Figure 1: An instance with 4 depots and 100 customers. The x- and y-axes represent the x- and y-coordinates
respectively.

Each depot ` has a fleet of m` homogeneous vehicles to deliver products to customers. Each of these
vehicles can travel a maximum distance D per day. We require D to be such that any customer
can feasibly be visited by a vehicle from at least one depot. We will from now on assume that the
number of vehicles per depot is non-binding and that the capacity of these vehicles is large enough
to accommodate any delivery. Furthermore, a vehicle route is required to both start and end at the
same depot and no other depots can be visited for pick-ups along the way.

To formulate this problem as a mixed integer linear program (MILP), we define the following decision
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variables:

xijk` =

{
1 if vehicle k from depot ` visits vertex j immediately after vertex i,

0 otherwise,

bhi` = the amount of product h supplied to vertex i by depot `.

We minimize the total travel costs of vehicles. That is,

min
t∑

`=1

m∑̀
k=1

t+n∑
i=1

t+n∑
j=1

cijxijk` (1)

subject to

t+n∑
i=1

xigk` −
t+n∑
j=1

xgjk` = 0 ∀g, k, ` (2)

t+n∑
j=1

x`jk` ≤ 1 ∀k, ` (3)

zhijk` ≤ Qhixijk` ∀h, i, j, k, ` (4)

zhijk` ≥ 0 ∀h, i, j, k, ` (5)

zhijk` ≤ bhi` ∀h, i, j, k, ` (6)

zhijk` ≥ bhi` −Qhi (1− xijk`) ∀h, i, j, k, ` (7)

t∑
`=1

m∑̀
k=1

t+n∑
j=1

zhijk` = Qhi ∀h, i (8)

t+n∑
i=1

bhi` ≤ Sh` ∀h, ` (9)

t+n∑
i=1

t+n∑
j=1

cijxijk` ≤ D ∀k, ` (10)

∑
vi∈S

∑
vj∈S

xijk` ≤ |S| − 1 ∀k, `, S ⊆ V \ {v1, . . . , vt}; |S| ≥ 2 (11)

xijk` ∈ {0, 1} ∀i, j, k, ` (12)

bhi` ∈ {0, . . . , Qhi} ∀h, i, k, ` (13)

Constraints (2) ensure that when a vehicle from a given depot arrives at a customer, it also leaves
that customer. Constraints (3) guarantee that each vehicle from a given depot is used at most once.
Constraints (4)-(7) model the linearization of the product of bhi` and xijk`. Constraints (8) ensure that
each customers demand for each product is met by the total deliveries. Constraints (9) are in place
to limit the total delivery of each product by a given depot, by that depots supply of each product.
Limits on route length are imposed through constraints (10). Finally, constraints (11) are standard
subtour elimination constraints. The objective function (1) and constraints (2), (3), (10), (11) and (12)
are taken from Cordeau et al. (1997), but adjusted to suit this particular problem.

3 Solution approach

VRP is NP-hard, which means there does not exist a polynomial time algorithm to solve it, unless
P = NP. As a generalization of the VRP, the multi-product MDVRP is even more difficult to solve,
and thus NP-hard as well. Therefore, we choose a heuristic approach.
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To solve instances of the generalized MDVRP, we propose an iterated local tabu search heuristic.
Starting from an initial solution, Iterated Local Search (ILS) uses a local search algorithm to search
the solution space, and a perturbation algorithm to diversify the search space and prevent the algorithm
getting trapped in local optima. The search is further diversified by allowing the local search algorithm
to restart its search from previously found solutions. For an elaborate introduction on ILS, see
Lourenço et al. (2003).

The local search algorithm used within the ILS is tabu search. Starting from a solution s, the tabu
search iteratively moves to the best neighboring solution s′ from the set N(s) of all solutions neigh-
boring s. Solutions are evaluated using objective function f(s). Since we allow infeasible solutions
during the search, the constraints with respect to the route duration and the delivery of the prod-
ucts are relaxed. Excesses of route duration and deliveries are penalized. The objective is given by
f(s) = c(s) +αd(s) + βq(s). Here, c(s) is the route duration and α and β are the penalty coefficients.
d(s) and q(s) are the excess route duration and excess delivery respectively. They are given by

c(s) =
t∑

`=1

m∑̀
k=1

t+n∑
i=1

t+n∑
j=1

cijxijk`,

q(s) =
t∑

`=1

p∑
h=1

[(

m∑̀
k=1

t+n∑
i=1

t+n∑
j=1

zhijk`)− Sh`]+,

d(s) =

t∑
`=1

m∑̀
k=1

[(

t+n∑
i=1

t+n∑
j=1

(cij)xijk`)−D]+.

The penalty coefficients α and β are set to 1 at the start of the tabu search, and they are adjusted
throughout the optimization. This is done by multiplying or dividing α and β by 1 + δ, depending
on whether their corresponding penalty term is positive or zero respectively. We let δ be chosen
randomly from an interval at the start of each tabu search phase. This interval is determined in
Section 5. Adjusting the penalty coefficients pushes the search towards feasible solutions.

To diversify the search space and prevent getting trapped in local optima, solution possessing attributes
of recently searched solutions are declared tabu for a number of iterations, unless a certain aspiration
criterion is met. This means that these solutions may not be searched during the period that they are
tabu, unless their objective meets some threshold. For an elaborate introduction on tabu search, see
Glover (1990).

4 Iterated local tabu search heuristic

In this section the ILS heuristic with tabu search is described in depth. The heuristic starts from
an initial solution s0, which is improved before the iterated local search is started. The improved
solution is called ŝ and if the improved solution is feasible, it is called s∗, which is the best feasible
solution found. The iterated local search heuristic uses multiple phases in each iteration: a perturb
phase, an improve phase and an acceptance phase. In the perturb phase, solution ŝ is perturbed
to solution s′. This solution is improved, which results in solution s̃. If the improved solution is
accepted, the next perturbation will be done with s̃, otherwise, ŝ will be perturbed again. For every
improved solution, the objective is compared with the objective of the best feasible solution found.
If the objective is lower and feasible, the best feasible solution will be s̃. The improvement phase
is the most time consuming phase in the iterated local search. Every improvement phase contains
multiple improve iterations. Therefore, the termination of the iterated local search is determined by
the number of improve iterations within an improvement phase. The iterated local search heuristic is
given in Algorithm 1.
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s0 ← initial solution
s∗ ← ŝ← improve(s0)
while ¬ termination do

s′ ← perturb(ŝ)
s̃← improve(s′)
if accept(s̃) then

ŝ← s̃
end
if f(s̃) < f(s∗) then

s∗ ← s̃
end

end
return s∗

Algorithm 1: The iterated local search
heuristic.

Figure 2: Initial solution of the instance from Fig-
ure 1.

4.1 Initial solution

We find an initial solution in which every customer is visited. It is assumed that the initial solution
may be infeasible due to excess deliveries with respect to depot supply. As the number of vehicles per
depot is assumed to be non-binding, there will no excess route duration in the initial solution. The
initial solution is found using the sweep algorithm as first introduced by Wren and Holliday (1972).

First, every customer is assigned to its nearest depot. Second, we find for each depot its nearest
customer. Then, for each depot its assigned customers are sorted in non-decreasing order of the angle
they make with the depot and the nearest customer of that depot. The sorted customers make a
giant tour with the depot. The first vehicle of a depot then goes to the first customer. As we require
the initial solution to be feasible with respect to the maximum route length, when a vehicle is at a
customer, the vehicle is allowed to go to the next customer in the list if from there it can also feasibly
return to the depot. This check is repeated at the next customer in the list. If for some customer
route length feasibility is violated, the vehicle returns to the depot. Note that this is possible without
exceeding the maximum travel distance due to the preceding check and the assumption that any
customer can feasibly be visited by a vehicle from at least one depot. When a vehicle must return to
the depot, the next vehicle will serve the customer after the last customer in the list sorted by the
angle of the customer. This proceeds until every customer is visited by a vehicle from its assigned
depot. A graphical example of an initial solution is shown in Figure 2.

We do not take care of the supply of the depots. For the initial solution, we assume that the depots
have an infinite supply of the products and that every customer receives what he demands. However,
there is a penalty for excess deliveries in the objective function.

4.2 Improve

The largest part of the ILS heuristic is the improvement phase. Every improvement phase consists
of multiple iterations, in which several neighborhoods are searched to improve the solution. Each
neighborhood has a certain probability of being searched during a iteration.

4.2.1 Neighborhoods

Following notation as in Cordeau et al. (1997), each solution s is associated with attribute set B(s) =
{(i, k, `)}, where attribute (i, k, `) ∈ B(s) means that, in solution s, customer i is served by vehicle
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k of depot `. Each solution s has neighborhood N(s). A solution s′ ∈ N(s) can be obtained by
the removal from and addition of attributes to B(s). In each iteration of the improvement phase,
neighborhood type Na (a ∈ 1, . . . , 5) is selected and searched for improving solutions with probability
pa, where

∑5
a=1 pa = 1. We describe these neighborhood types below.

1. Move customer to other depot

In the first neighborhood N1, one customer is moved to another depot. That is, for some
customer i attribute (i, k, `) is changed to attribute (i, k′, `′), where `′ is another depot as ` and
k′ can be any truck from the set {1, . . . ,m`′}. We write N1 = {(i, k, `)→ (i, k′, `′) | ` 6= `′}.

The heuristic uses cheapest insertion to insert customer i in every truck of every depot `′ 6= `.
In order to decrease the running time of the search, this neighborhood is not searched fully,
but rather for some fraction ξN1 of customers. The customer whose insertion into another route
leads to the lowest objective value is moved to its new depot and vehicle, given that this move
is not tabu (see Section 4.2.2).

2. Move customer to other vehicle

In the second neighborhood N2, one customer is moved to another vehicle within the same depot,
that is, N2 = {(i, k, `)→ (i, k′, `) | k 6= k′}. Again, cheapest insertion is used to insert customer
i into the route of vehicle k′ and the neighborhood is searched only for fraction ξN2 of customers.
The move with the lowest objective value is performed, given it is not tabu.

3. Split customer

For every depot with excess delivery, the customer receiving the largest amount of the product
with the highest excess delivery is found. For every such customer, the objective value after the
split is calculated, and the split of the customer with the lowest objective value is performed.
The split is done as follows. From the original depot, the customer receives half of the original
delivery of this product. The other half is delivered by a vehicle from a new depot, which is
chosen by cheapest insertion.

From a route perspective this neighborhood is defined as N3 = {(i, k, `) → {(i, k, `), (i, k′, `′)} |
` 6= `′}.

4. Inter depot interchange

In the fourth neighborhood N4, one customer i is interchanged with customer j, which is one of
customer i’s d

√
ne nearest neighbors served by the same depot, but which is served by another

vehicle. Cheapest insertion is used to insert customer i and j in each others routes. This
interchange is performed for fraction ξN4 of customers in order to reduce running time of the
heuristic. The objective is calculated for each interchange, and the interchange with the lowest
objective is performed.

Mathematically, this neighborhood is described asN4 = {{(i, k, `), (j, k′, `)} → {(i, k′, `), (j, k, `)} |
k 6= k′}.

5. Intra depot interchange

Finally, in the fifth neighborhood N5, a customer i is interchanged with customer j, but now j
is required to be served by another depot. Cheapest insertion is used to insert customer i and
j in each others routes. This interchange is performed for fraction ξN5 of customers in order to
reduce running time of the heuristic. The objective is calculated for each interchange, and the
interchange with the lowest objective is performed.

Mathematically, we have N5 = {{(i, k, `), (j, k′, `′)} → {(i, k′, `′), (j, k, `)} | ` 6= `′}.
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4.2.2 Tabu list

When the heuristic moves from solution s to solution s′ within the the improvement phase, attributes
in the set B(s) \ B(s′) are declared tabu for the next θ iterations. This means that if a customer is
moved from depot ` and vehicle k, it is not allowed to place this customer back to depot ` and vehicle
k for the next θ iterations. Only when the aspiration criterion is satisfied, this move is possible.

The length of the tabu list θ will depend on the size of the instance in such a way that θ increases
with instance size parameters n, t, p and m, with m denoting the average number of trucks per depot∑t

`=1m`/t.

4.2.3 Aspiration criterion

A feasible solution s with tabu attribute (i, k, `) is approved if the objective value of s is lower than σik`,
the aspiration level of an attribute. All aspiration levels are initially set to infinity. When the heuristic
moves from solution s to feasible solution s′, we set σik` = f(s′) for all attributes (i, k, `) ∈ B(s)\B(s′)
for which the objective of s′ is lower than the current aspiration level.

4.2.4 Diversification

The tabu search is diversified by augmenting the objective function that is used when evaluating
a solution s′ ∈ N(s). That is, when during the tabu search the objectives of a set of neighboring
solutions are compared, an augmented objective function is used rather than objective function f
itself. The augmentation is by a penalty term that is proportional to the number of times attributes
in B(s′) \ B(s) have been used to move to a neighborhood in previous iterations. Let ρik` be the
number of times attribute (i, k, `) has been added to a solution in previous ILS iterations. Then, the
augmented objective function g(s′) is defined as follows

g(s′) = f(s′)

1 + ζ
∑

(i,k,`)∈B(s′)\B(s)

ρik`
λ

 .

Here, ζ is the control parameter for diversification, which is drawn from some continuous uniform
distribution at the beginning of each improvement phase and is used to control the influence of the
diversification, and λ is the current iteration number.

4.2.5 Stopping criterion

The improvement phase continues until no better feasible solution is found for µ iterations. Although
the value of µ needs to be tested still, it depends on η, λ and π, where π is the number of cus-
tomers which were perturbed in the perturb phase preceding the improvement phase (see Section 4.3).
Balancing these three parameters, the heuristic will be allowed longer searches in early improvement
phases and in improvement phases succeeding perturb phases with high values of π.

4.3 Perturb

Another part of the iterated local search heuristic is the perturbation of the solution, which main
function is to broaden the search space of the heuristic. When a solution is perturbed, a cluster of
customers is removed from their current vehicle and depot, and inserted into another route.

First, a random customer is chosen. Then, this customer and its π nearest neighbors are removed
from their current routes and all randomly assigned to a new depot and a new vehicle. Using cheapest
insertion they are inserted into the new route.
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4.4 Accept

After every improvement phase in the iterated local search, the current solution is accepted with
probability γ. If the solution is accepted, the next perturbation will be done with this solution. If
the solution is not accepted, the previous accepted solution will be perturbed. This means that this
solution was already perturbed in the previous perturbation phase.

5 Parameter tuning

We have performed experiments on the ILS in order to find the best values for the parameters. To tune
the parameters, we have 100 test instances with different numbers of depots (2 ≤ t ≤ 4), products
(1 ≤ p ≤ 5) and customers (n = 50, 70, 100, 120). The locations of the depots and customers are
randomly generated on a square of [0, 100] × [0, 100]. First, we examined the parameters given in
Table 1. In cases where fractional results are obtained for discrete parameters values, results were
always rounded up.

Table 1: Parameter on which we perform sensitivity analysis.

Parameter Definition

θ Tabu length
δ Adjustment parameter for α and β
ζ Control parameter for diversification
µ Parameter for stopping criterion
π Perturbation size
γ Acceptance probability

For each experiment, we did five runs for four different test instances, which are chosen such that they
have different characterizations. These are given in Table 2. This set of experiments was done with
η = 6n iterations, except for instance 100 where we used η = 2n, in order to decrease running time.

Table 2: Instances on which sensitivity analysis was performed.

Instance t p n

8 2 2 50
20 2 4 50
55 3 1 100
100 4 5 120

5.1 Tabu length θ

Experiments are performed to determine the optimal length of the tabulist. This length is deter-
mined at the beginning of every improvement phase. Cordeau and Maischberger (2012) use a random
tabu length from the discrete uniform distribution on [0,

√
nmt]. We will compare this interval with

[0,
√
nmpt], since our problem has multiple products, and the optimal tabu length seems to increase

as the instance size increases. Furthermore, a fixed tabu length of 4
√
nmpt was tested. The results

can be found in Table 3a.

From Table 3a, we see that for instance 8 and 20 the second considered tabu length gives the best
results, whereas the first tabu length is better for instances 55 and 100. The last tabu length does
not give good results. We choose to use a random tabu length from the interval [0,

√
nmt]. This tabu

length is also used in further experiments.
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Table 3: Parameter setting of θ and δ.

(a) Mean objective value for different values of θ.

θ

Instance [0,
√
nmt] [0,

√
nmpt] 4

√
nmpt

8 714 692 731
20 781 760 810
55 1090 1114 1127
100 1560 1575 1656

(b) Mean objective value for
different values of δ.

δ

Instance [0, 1] [0, 0.5]

8 692 740
20 760 739
55 1114 1060
100 1575 1508

5.2 Adjustment parameter for penalties δ

The penalties of infeasibility are controlled by a random parameter δ. Higher values of δ result in
a faster adjustment of the penalty parameters α and β. We tested δ for two continuous uniform
distributions from which a value is picked at the beginning of an improvement phase. The intervals
of these distributions are [0, 1] and [0, 0.5]. Results of the experiments can be found in Table 3b.
This table shows that for three of the four instances, the interval [0, 0.5] performs better than the
interval [0, 1]. Therefore, the interval for δ is set to [0, 0.5] and these values are also used in further
experiments.

5.3 Control parameter for diversification ζ

The control parameter for diversification, ζ, is randomly taken from a continuous uniform distribution
at the start of each improvement phase. Four different intervals are tested: [0, 0.5], [0, 1], [0, 2] and
[0, 4]. The results of the experiments are shown in Table 4a.

Table 4: Parameter setting of ζ and µ.

(a) Mean objective value for different values of ζ.

ζ

Instance [0, 0.5] [0, 1] [0, 2] [0, 4]

8 701 740 758 724
20 764 739 778 831
55 1069 1060 1114 1090
100 1507 1508 1739 1767

(b) Mean objective value for different values of
µ.

µ

Instance
√

(η − λ)π 15 4
√

(η − λ)π

8 740 701
20 739 753
55 1060 1060
100 1508 1461

As can be seen in Table 4a, the intervals [0, 0.5] and [0, 1] are performing the best. We choose to use
interval [0, 1] for ζ, which is also used in later experiments.

5.4 Parameter for stopping criterion µ

After µ non-improving iterations the improvement phase stops. We give µ a high value in early
improvement phases, but let its value decrease towards the end. Cordeau and Maischberger (2012)
proposed µ =

√
(η − λ)π. As we observed that the improvement phase may be too short at the

end of the run, we compared this value of µ with µ = 15 4
√

(η − λ)π, see Table 4b. We have chosen
µ = 15 4

√
(η − λ)π, which is used in further experiments.
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5.5 Perturbation size π

The perturbation size is picked randomly from a discrete uniform distribution at the beginning of an
perturbation phase. We did experiments on two intervals for these distributions: [0,

√
n] and [0, 2

√
n].

In Table 5a, the results of these experiments are shown.

Table 5: Parameter setting of π and γ.

(a) Mean objective value for different
values of π.

π

Instance [0,
√
n] [0, 2

√
n]

8 701 701
20 753 724
55 1060 1116
100 1461 1388

(b) Mean objective value for different values
of γ.

γ

Instance 1− (η/λ)2 1− (η/λ)

8 701 690
20 753 786
55 1060 1104
100 1461 1401

When looking at the averages, it is difficult to determine which interval is best. However, we noticed
that the results of the experiments with interval [0,

√
n] had a few bad results, but also good results.

We are planning to perform a few experiments, and the best objective will be saved. Therefore, we
will use the interval [0,

√
n].

5.6 Acceptance probability γ

The probability that an improved solution is accepted for the next perturbation phase is high for
solutions with a low iteration number, and low for solutions with a high iteration number. Two
possible values for γ are γ = 1− (η/λ)2 and γ = 1− (η/λ). The results of the experiments with these
values are given in Table 5b. As three out of the four instances perform better with γ = 1 − (η/λ)2

than with the other value of γ, we take γ = 1 − (η/λ)2 as the probability of accepting a solution.
When we perform further experiments, this value will be used.

5.7 Probabilities of neighborhoods

We have performed experiments on five different settings for the probabilities of the neighborhoods
in the improvement phase. Only one of these neighborhoods is explored per improve iteration. The
settings are shown in Table 6. We choose three instances to test these settings. They differ in the
number of depots, customers and products in order to find good probabilities for all types of instances.
For every setting, five experiments are performed and the mean values of these experiments can be
found in Table 7.

Table 6: Probabilities of the neighborhoods per improve iteration for five different settings.

Setting P (N1) P (N2) P (N3) P (N4) P (N5)

1 0.5 0.25 0.1 0.1 0.05
2 0.025 0.5 0.1 0.1 0.05
3 0.4 0.4 0.05 0.1 0.05
4 0.325 0.325 0.05 0.15 0.15
5 0.45 0.3 0.75 0.125 0.05

As can be seen in Table 7, setting 3 performs best. Therefore, for further experiments, we use the
probabilities of the neighborhoods as in setting 3.
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Table 7: Mean objective values for different settings of probabilities for the neighborhoods.

Instance Setting 1 Setting 2 Setting 3 Setting 4 Setting 5

14 768 838 758 810 781
36 959 999 956 1048 984
80 1313 1428 1310 1317 1304

Mean 1013 1089 1008 1059 1023

Within each neighborhood, customers have only a limited probability to be explored. In this way, the
running time per neighborhood is reduced and we prevent the algorithm of converging too fast. We
have performed experiments on the probabilities within each neighborhood, ξNa , with a ∈ {1, . . . , 5}.
We have found the following values: ξN1 = 0.4, ξN2 = 0.25, ξN3 = 1, ξN4 = 0.25 and ξN5 = 0.25.
Neighborhood N3 is fully searched since only the customers with highest demand for a product are
split.

6 Results

The ILS heuristic was used to solve 1000 instances, each with η = 200000/(nt) iterations. Every
instance was solved twice, and the best solution was stored. The total number of iterations was
chosen to depend on n and t as we wanted all instances to run with fair running times. However, we
observed that the running times increase with instance size if the number of iterations was kept fixed.
An example of the graphical representation of the routes can be seen in Figure 3.

Figure 3: Solution of the instance from Figure 1 as returned by the heuristic.

Table 8 shows the mean objective value of 20 instances with the same number of depots, customers and
products. Also, the mean objective value and mean CPU in seconds are given for each combination of
depot and customer size. A number of things are observed. First, we notice that instances with more
customers have higher objective values. This is obviously what is expected as the vehicles have to visit
more customers and the objective value for feasible solutions is the total traveled distance. We also
see that the average distance traveled per customer increases as the number of customers decreases.
For example, the average total traveled distance for 140 customers is 1325, and hence, per customer
9.47. For the instances with 40 customers, we have an average total travel distance of 656 and per
customer 16.39. This is also expected, as the distance between customers decreases as the number of
customers increases.

We observe that instances with more depots have a higher objective value than instances with less
depots. For example, instances with 80 customers that have 4, 3 or 2 depots have an average objective
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Table 8: Mean objective value of 20 instances with same number of depots, customers and products.

p

t n 1 2 3 4 5 Mean Mean CPU (s)

2 40 624 635 648 670 698 656 63
60 773 797 804 817 835 805 125
80 914 898 933 966 977 938 212

3 60 749 793 832 840 917 826 106
80 882 923 970 963 1036 955 190
100 1025 1054 1078 1110 1195 1093 263
140 1223 1252 1363 1360 1419 1324 594

4 80 887 931 967 1022 1131 988 160
100 1038 1053 1130 1140 1238 1120 240
140 1201 1288 1312 1380 1452 1327 585

value of 988, 955 and 938 respectively. These averages are over 100 instances with 1 to 5 products.
This is not what we expected, since on average, with more depots, there should be a depot closer by
to the customer. However, as we set the number of iterations on 200000/(nt), the instances with more
depots have less iterations than instances with fewer depots and are expected to find worse solution
on average. The average running time also shows that the small instances can search longer: 160, 190
and 212 seconds are the average running times for 4, 3 and 2 depots respectively. Furthermore, as
depot supply is limited, the argument that instances with more depots are at least as easy as instances
with less depots, does not hold.

We see that the objective value increases as the number of products increases, other parameters held
constant. For example, the increase in objective value from one to five products for the instances with
40 customers and 2 depots is 10.6%. We also observed that the relative difference in objective value
from one product to five products is bigger as the number of depots increases. For instances with 80
customers, the increase in the average objective value for 2, 3 and 4 depots is 6.4%, 14.9% and 21.6%
respectively.

Using the sweep algorithm, we find that all initial solutions are infeasible with respect to the supply of
the depots. All final solutions obtained by the ILS are feasible. The average objective value (measuring
only route duration) of the initial solutions is 1542, whereas the average objective value of the final
solutions is 1003. Hence, the final solutions are an improvement in both feasibility and route duration,
since these are reduced by 35% on average. We notice that for the instances where a customer is at
the same location as a depot, the initial solution has a relatively high objective value, as our current
implementation of the sweep algorithm is not robust to this situation. However, the average of the
objective values of the initial solutions without these instances is 1520, and of the final solutions
without these instances 1000. Hence, for this situation, the average objective is reduced by 34%.

7 Conclusion

A solution approach was presented to solve instances of the MDVRP within reasonable time. In the
MDVRP a number of vehicles originating from multiple depots has to be routed to serve a set of
customers. We generalize previous research in this area by considering customer demand and depot
supply for multiple products. Furthermore, the problem difficulty is increased by assuming that the
depot supply for all products is limited.

An optimal solution returns a set of routes in which the total travel distance is minimized, given that
all customer demand is met from the depot supplies and no vehicle route exceeds the maximal travel
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distance for a vehicle. As a generalization of the VRP, which is known to be NP-hard, no known
algorithm is in place to find this optimal solution in polynomial time.

Therefore, we choose a heuristic approach to produce feasible solution within reasonable time. The
presented approach is an iterated local tabu search algorithm in which an initial solution is repeatedly
improved and perturbed in order to increase the solution quality. We find that the average objective
value increases as the number of customers increases. Also, the average objective value increases as
the number of products increases. This indicates that the problem becomes more difficult with more
products. Furthermore, the relative difference of the average objective value of instances with one and
five products increases as the number of depots increases.

To our knowledge, the MDVRP with multiple products and limited depot supply has never been
studied before and no known results from heuristics are publicly available to compare our heuristic
against. Since the problem is NP-hard, we are not able to find the optimal objective value for large
instances. Therefore, we have compared our results with our initial solution obtained by the sweep
algorithm. This problem is a relaxation of the original problem with respect to the supply of the
depot, as all demand is fulfilled. The routes are feasible with respect to the duration. We have found
that the average objective value is reduced by 35% compared with the initial solution and all final
solutions are feasible whereas they were infeasible for the initial solution.

Even though extensive effort has been put into the setting of various parameters, future research
could focus on further improvement of parameter setting to increase solution quality and consistency
or decrease processing time. Our research suggests that optimal values of various parameters seem to
depend on instance size, but some parameters were left instance independent due to time constraints.

Furthermore, upon graphical inspection of solutions, we observe that in a number of instances routes
cross over themselves still. Research focusing on the addition of neighborhoods, and in particular
the 2-opt move, will likely yield improving solutions. The inclusion of more sophisticated insertion
algorithms, such as the GENI algorithm as proposed by Gendreau et al. (1992), will likely add to a
further improvement of solution quality.
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1 Introduction

In this section we introduce the Multi-Depot Vehicle
Routing Problem with Multiple Products problem. In
subsection 1.1 we discuss the background of the prob-
lem and in subsection 1.2 we discuss the current liter-
ature on the topic.

1.1 Background

To stay competitive companies need to continuously
improve their productivity, quality, customer respon-
siveness and lower their costs. When it comes to
lowering costs, efficiency and optimization are key
terms. Factories, for instance, face the challenging
task to find an optimal schedule to process their
production. Such problems can be solved with
combinatorial optimization.

One of the best known issues in the field of
combinatorial optimization is the Vehicle Routing
Problem. In the earlier formulation of this problem
we consider a set of customers together with a fleet
of vehicles. The goal is to find for each vehicle

a sequence of customers to visit and deliver some
product such that the overall costs are minimized
and all customers are visited. Despite the relatively
simple setting obtaining an optimal solution turns out
to be challenging. In fact, decades of research have
passed and still the subject enjoys the attention of
many researchers. This is partly due to the relevance
of the theory involved in vehicle routing in numerous
of different fields, such as mathematics and artificial
intelligence. Another reason is the ease at which it
can be extended to more special cases. These special
cases are more interesting from a practical point of
view but obviously grow in complexity and therefore
require more scientific attention. One can consider,
for example, that a courier company is interested in
delivering a product within a certain time window. On
the other hand, in waste management it is common
to consider pickups as well. Although these examples
have a different focus they both rely on the same
basic setting the vehicle routing problem provides.

Besides the possibility to append the basic problem
with additional constraints, such as time windows,
one can increase the size of the problem. A natural
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extension is to enlarge the customer base. However,
other options to consider are the delivery of multiple
products or the situation in which the products are
stored in different locations or a combination of these.
Due to the complexity of vehicle routing problems
various ways exist to tackle it. Possible approaches
vary from exact algorithms coping with smaller sized
problems to heuristics applicable to larger instances.
In this paper, we construct an algorithm able to
solve the Multi-Depot Multi-Product Vehicle Routing
Problem. The produced algorithm is of a genetic
kind, i.e., we create a search heuristic that uses
the process of natural selection in order to find the
optimal solution.

1.2 Literature review

The vehicle routing problem (VRP) is mentioned for
the first time by Dantzig and Ramser (1959) where
a fleet of gasoline trucks is routed between a main
terminal and smaller service stations. Since then a
wide variety of VRPs emerged together with abundant
amounts of literature in this topic. In the recent paper
of Vidal et al. (2013) a decent overview of the most
researched classes of the VRP is provided, generalized
as Multi-Attribute Vehicle Routing Problems. They
argue that all variants of VRPs can be classified in the
following three categories.

1. Assignment of customers and routes to resources.

2. Sequence choices.

3. The evaluation of fixed sequences.

The Multi-Depot Vehicle Routing Problem, for
example, is contained in the Assignment of customers
and routes to resources category. Next to that, they
evaluate and discuss the concepts of some of the best
performing meta-heuristics to gain insights in why
they perform so well.

The particular class of VRPs we are interested
in basically consists of two other classes, i.e., the
Multi-Depot Vehicle Routing Problem (MDVRP)
and the Multi-Product Vehicle Routing Problem
(MPVRP) variants. The former has received a lot of
attention in literature (see, for example, Cordeau et al.

(1997) and Pisinger and Ropke (2007)) in contrast
to the latter. In case the MPVRP is considered it
is often of a load specific nature due to different
compartments reserved for different products in each
vehicle (Mendoza et al., 2010). The intuition is
that perishable goods, such as frozen food, may
need certain transport conditions. Despite the few
literature the Multi-Product variant is an interesting
and relevant class as Savelsbergh and Sol (1998) show
by investigating a case study of a large transportation
company. However, to the best of our knowledge
there is no literature available with respect to the
Multi-Depot Multi-Product Vehicle Routing Problem
(MDMPVRP). From a practical point of view the
MDMPVRP is relevant since it is applicable to, for
example, pharmacies and libraries. These types of
companies often have multiple locations and many
different products to offer.

Since the MDVRP has been extensively researched
we use the existing knowledge from that field in our
effort to construct a genetic algorithm capable of
solving the MDMPVRP. More specifically, we base
our algorithm on the paper of Vidal et al. (2012) since
their genetic algorithm proves to be fast and able to
solve a set of benchmark instances to optimality.

The remainder of the paper is organized as fol-
lows. Section 2 states the notation and formal
definition of the MDMPVRP together with a de-
scription of the assumptions. The properties of the
feasibility of a solution are described in Section 3.
Section 4 discusses all aspects of the proposed Genetic
Algorithm in detail, including a set of experiments
to tune its parameters. The quality of the solutions
is reviewed in Section 5. Section 6 contains the
experimental insights and section 7 contains the
conclusion and recommendations for future research.

2 Problem formulation

We formally present the problem and introduce some
definitions and notations. The representation is partly
based on the model from Vidal et al. (2012).
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Parameter Description

D = {1, ... ,D} the set of depots
P = {1, ... ,P} the set of products
N = {1, ... ,N} the set of customers
V CUST = {v1, ... , vN} the set of customer vertices
VDEP = {vN+1, ... , vN+D} the set of depot vertices
V = V CUST ∪ VDEP the set of vertices
E the set of edges
R the set of routes
cij travel cost from vi ∈ V to vj ∈ V
qnp demand of customer n for products p
sdp supply in depot d of products p
T maximum travel time per vehicle

xijrd =

{
1 if vertex vi is immediately visited after vi in route r starting at depot d

0 otherwise

ynpd =

{
1 if for customer n demand for product p is supplied by depot d

0 otherwise

Table 1: All relevant variables and parameters for the MDMPVRP.

We have a number of depots, D, in which P
different products are stored. These inventories are
used to meet the known demand of N customers.
Then, the MDMPVRP can be defined as follows.
Consider a complete graph G = (V ,E ) with V the
set of vertices and E the set of edges. The set V can
be divided into two subsets, i.e., V = V CUST ∪VDEP ,
representing the set of customers and depots, re-
spectively. Hence, it follows that |V | = D + N. For
customer n = 1, ... ,N and product p = 1, ... ,P, we
face the known demand qnp. Similarly, we let sdp
denote the supply at depot d = 1, ... ,D of product
p = 1, ... ,P. If the demand of customer n for product
p is supplied by depot d we let ynpd = 1. Otherwise,
we have ynpd = 0. At each depot an unlimited
fleet of homogeneous vehicles is available. Vehicle
capacity does not impose limits in practice, but there
is a maximum travel time T per vehicle. For each
edge ei ,j ∈ E we let cij represent the travel cost
to go from vertex vi ∈ V to vj ∈ V . We assign
one vehicle to each route, where we define a route
as follows. A route r starts at a depot d situated
at vd ∈ VDEP and sequentially visits nr customers
located at vi ∈ V CUST , i ∈ N, and ends in the

starting depot d . Note that the set of customers
in a route starting at depot d is a subset of the
customers assigned to depot d . We assume that
for all products the total supply at the depots is
sufficient to meet the total demand of the customers,
i.e.,

∑
d sdp ≥

∑
n qnp, p = 1, ...P. Furthermore, we

have the following additional constraints. For each
customer the demand for a certain product cannot be
delivered by multiple vehicles. On the other hand, we
allow each customer to receive different products from
different depots. In addition we impose the restriction
that the vehicles starting in depot d cannot visit depot
d ′, where d 6= d ′. Also, for each product the sum of
the demands of all customers assigned to a certain
depot cannot exceed the supply at that depot, i.e.,
sdp ≥

∑
n ynpdqnp, p = 1, ...P, and d = 1, ... ,D. The

goal is to find the schedule in which for all customers
each product is allocated to a depot producing the
lowest transportation costs. In other words, we want
to minimize transportation costs, under the condition
that all demand is met. All parameters and decision
variables are summarized in Table 1. The resulting
Mixed Integer Linear Program formulation can be
found in more detail in Appendix A. When we refer
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to the distance or transportation costs we mean the
traveling time.

3 Properties

Assume we relax the constraint of a maximum travel
time per vehicle. Then, we only need at most one ve-
hicle per depot and the total distance corresponding
to this setting provides a lower bound. Adding the
constraint again could cause the solution correspond-
ing to the lower bound to become infeasible. It is
straightforward to see that good solutions are likely to
be found on the borders of feasibility. This observa-
tion gives rise to the idea to relax the maximum travel
time constraint in our algorithm to fruitfully explore
the boundaries of feasibility. In order to do so we intro-
duce the concept of a penalized cost for a route which
works as follows. Consider a route r starting at depot d
and visiting nr customers, summarized by the sequence
r = vd , v1, ... , vnr , vd . The associated distance is given
by c(r) = cdv1 +

∑nr−1
i=1 cvivi+1 +cvnr d . Note that with-

out the maximum travel distance constraint we could
have c(r) > T . Hence, we consider the penalized cost
defined by φ(r) = c(r) +ωmax(0, c(r)−T ). That is,
when the route duration c(r) exceeds the maximum
travel time, the difference between c(r) and T is pe-
nalized by a factor ω.

4 Solution approaches

In this section we discuss our general approach for
solving the MDMPVRP and discuss in detail all the
steps.

We know that the Traveling Salesman Problem
(TSP) is NP-hard (Karp, 1972). Since the MDM-
PVRP is a generalization of the TSP it is NP-hard
as well. Therefore, we try to heuristically solve the
MDMPVRP. The meta-heuristic we propose is based
on the Hybrid Genetic Search with Adaptive Diversity
Control (HGSADC) of Vidal et al. (2012). The pseudo
code of our meta-heuristic is exactly the same as Vidal
et al. (2012) present and is shown in Algorithm 1.
Before discussing the steps in more detail we review
the general steps of the algorithm. The first step is to

randomly create an initial population. Since we relax
the maximum travel time constraint each solution can
be either feasible or infeasible and we divide the pop-
ulation in two corresponding sub-populations. Then,
for each iteration we select two parents, P1 and P2,
based on their qualifications and generate an offspring
C . The offspring C is educated by a local search
procedure and added to the sub-population according
to its feasibility. When one of the sub-populations has
reached the maximum size, we keep the best solutions
and delete the remaining from the sub-population
under consideration. To avoid our algorithm getting
stuck at some local optimum we invoke the diversify
procedure as soon as we observe that the best solution
does not improve for a number of iterations. This
procedure creates a new population by calling the
initialization procedure and combines it with the best
solutions of the old population.

Algorithm 1 (HGSADC)

1. Initialize population
2. while number of iterations without improvement
< ItNI , and time < Tmax

(a) Select parent solutions P1 and P2

(b) Generate offspring C from P1 and P2

(crossover)

(c) Educate offspring C (local search procedure)

(d) if C is infeasible, then insert C into infeasi-
ble sub-population.

(e) if C is feasible, then insert C into feasible
sub-population.

(f) if maximum sub-population size reached,
then select survivors

(g) Adjust penalty parameters for violating fea-
sibility conditions

(h) if best solution not improved for ItDIV iter-
ations, then diversify population

3. Return best feasible solution

4.1 Search Space and Initialization

The initial population S is created by generating 4µ
solutions. In the initialization procedure presented
by Vidal et al. (2012) solutions are created by

ITRACT: Routing vehicles with inventory constraints

20



Depot

(a)

C1

C2

C3

C4

C5

10

40

20 15

50
30

35
25

15

Depot C1 C2 C3 C4 C5

(b)

20

80

105+5

60

85

90

130+30

75

65

115 + 15

90

50 30

Figure 2: Example of a giant tour representation (a), and its corresponding auxiliary acyclic graph with
maximum travel time T = 100 and penalty ω = 1 (b)

randomly assigning customers to depots. In turn,
routes are formed by randomly choosing a sequence
of customers. We deviate from this approach due
to the following observation. It is possible that a
certain customer is supplied from multiple depots. In
a good solution the number of these split deliveries
is most likely limited. Next to that, a customer
is preferably supplied from a depot located nearby.
This is not always possible since in the process of
assigning customers to depots supplies will eventu-
ally be depleted and customers can no longer be
serviced from their preferred depot. To illustrate the
consequences we consider the following example of
three depots and two customers depicted in Figure
1. Since the distance from Customer 2 to each of
the three depots is almost equal, it is not relevant
to assign this customer to its nearest depot. The
contrary holds for Customer 1 and servicing him from
the nearest depot is more important. By considering
the standard deviation of each customer with respect
to the distances to each depot we retrieve a priority
ranking. When it comes to travel time, customers
with a high standard deviation, i.e., ranking, are more
important to assign to the nearest depot. Then, we
randomly determine the length of the ranked sequence
and we randomly add the remaining customers. The
resulting sequence determines the order in which
customers are assigned to the depots. Starting from
the nearest depot, a customer is only assigned if all
products can be supplied. Any remaining customer
will receive deliveries from multiple depots as follows.

Depot 1

Depot 2

Depot 3

C2

C1

Figure 1: Example illustrating importance of depot
allocation

We form a sequence of customers, decreasing in the
number of outstanding products. Then, for each
customer we validate whether we can assign P − 1
products, starting at the nearest depot. If no depot
is capable of supplying P − 1 products, we repeat
this process for P − 2, ... , 1 products. By ranking the
customers we avoid our algorithm spending too much
time searching in unfavored directions. We are aware
that especially for Genetic Algorithms this kind of
steering can be risky. However, experiments showed
that with less computation time we were able to find
better solutions.

After specifying for all customers the depots re-
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sponsible for delivering each of the products, we
construct for each depot d a sequence of nd cus-
tomers by applying the nearest neighbor procedure.
This sequence is called the giant tour, and passes
through all assigned customer locations. Using the
notation of Vidal et al. (2012) we define the giant
tour by σd1 , ... ,σdnd , σdi ∈ V CUST . It is intuitive that
a giant tour has a shorter distance than multiple
routes, provided that the sequence of customers is
based on the nearest neighbor procedure. Then, with
probability PRE the solution is educated and inserted
in the appropriate sub-population according to its
feasibility. To obtain all different routes starting from
depot d we combine the giant tour and the penalized
cost function. In order to do so we use the same
algorithm as Vidal et al. (2012), named Split which
was introduced by Prins (2004). This algorithm
translates a giant tour into a graph Gd = (Vd ,Ed)
where Vd is the set of vertices containing depot d
and all its assigned customers. The set of edges Ed

consists of two subsets. The first subset contains the
edges en,n+1, vn ∈ Vd linking each customer to its
immediate predecessor. The second subset consists
of the edges ed ,n ∈ Ed for all the nd customers in
the giant tour and represents a direct route between
each customer and depot d . We assign to each
edge ei ,j ∈ Ed a weight equal to the Euclidean
distance between vertices vi and vj . An illustration
of such a graph is given in Figure 2 (a). This graph
can be transformed to an auxiliary acyclic graph,
H, containing all possible routes r that cover all
customers in the giant tour. The edges in graph H
have weights equal to the penalized cost, see Figure
2 (b) for an example with maximum travel time
T = 100 and penalty ω = 1. Finding the shortest
path in graph H results in the route delimiters.
We solve the shortest path with Dijkstra’s algo-
rithm (Dijkstra, 1959). A more detailed description
can be found in the e-companion of Vidal et al. (2012).

Now we have for each solution s a set of routes,
R(s). The total distance associated with this solution,
φ(s), equals the sum of the penalized cost of all
routes, i.e., φ(s) =

∑
r∈R(s) φ(r). Observe that if the

maximum travel distance constraint is violated we
find

∑
r∈R(s) φ(r) >

∑
r∈R(s) c(r) and the solution

Depot 1 Depot 2

customers 5 2 1 4 1 3

product 1 2 6 4 0 0 1
product 2 1 2 0 2 4 0

Table 2: Chromosomes Representation

is infeasible. Then, the total population is divided in
two subsets corresponding to feasible and infeasible
solutions.

4.2 Solution Representation

A solution is characterized by the product allocation of
each customer over the depots, the sequence of cus-
tomer visits, and the penalty used for exceeding the
maximum travel distance. According to Vidal et al.
(2012) the representation of routes from the same de-
pot as a giant tour is useful as it provides the means
to use simple and efficient crossover procedures work-
ing on permutations. Hence, an individual s is rep-
resented as a set of two chromosomes. The first set
corresponds to the giant route chromosome and con-
tains the sequence σd1 , ... ,σdnd of customers per depot
d . The second set reflects the customer chromosome,
which contains for each customer n assigned to depot
d the demand for product p supplied by that depot.
In Table 2 an example is given with two depots, five
customers, and two types of products p1 and p2, re-
sulting in two giant tours with the customer sequence
and the demand of these customers supplied by each
depot. To obtain the set of routes associated with this
solution we apply the Split algorithm with the penalty
ω as input.

4.3 Evaluation of Individuals

In a given population some individuals are more rel-
evant than others in terms of genetic information.
Therefore, we apply an evaluation function to assign
a certain fitness value to each solution. Vidal et al.
(2012) mention that such an approach is generally my-
opic with respect to the possible impact of the eval-
uation and selection processes on the diversity of the
population. They determine a fitness measure that ad-
dresses both the diversity contribution and the costs.
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As it turns out, this approach is very time consum-
ing for our problem and we choose to base our fitness
measure only on the penalized distance of a solution.

4.4 Parent Selection and Crossover

Offspring solutions are created according to Algorithm
2, where Step 1 to Step 3 are based on the paper
by Vidal et al. (2012). For each parent we randomly
select, with uniform probability, two candidates from
the entire population and keep the one with the
shortest penalized distance. The remainder of Step
1 basically forms an initialization for the inheritance
procedure in Step 2. Offspring can inherit genetic
information from a parent in numerous proportions.
As a consequence Vidal et al. (2012) mention the
possibility to create a solution which is to a large
extent similar to one of the parents. This enables
the fine-tuning of solutions. On the other hand, a
more balanced mixture of genetic information from
both parents provides the opportunity to enlarge the
search space. Compared to Vidal et al. (2012) we
have the additional constraints with respect to the
demand and supply of all the different products.
This implies we have to be careful when assigning
the inherited products of a customer to a depot.
Since it is most efficient for each customer to have
all products supplied by a single depot we try to
achieve this as follows. When a parent passes on a
certain customer from a depot we assign its entire
outstanding demand to that depot. If for at least
one product the supply is inadequate to meet the
demand, the customer is not inherited at this point.
By doing so, we save room for customers for which
all products can be delivered by the depot under
consideration. It follows that after a first attempt of
passing on genetic information we may still have some
customers for which not all products can be assigned
to a single depot. Furthermore, due to the random
nature of the genetic material it is possible that some
customers are not inherited at all. To complete the
allocation we validate whether a depot is able to
supply P products, starting from the customer with
the most unassigned products. While we still have
unmet demand we repeat this for P−1, ... , 1 products.

Algorithm 2

Step 1: Inheritance rule

1. Pick two random numbers between 0 and D
according to a uniform distribution. Let n1
and n2 be, respectively, the smallest and the
largest of these numbers;

2. Randomly (uniform distribution) select n1
depots to form a set λ1;

3. Randomly (uniform distribution) select n2−
n1 depots to form a set λ2;

4. The remaining D − n2 depots make up the
set λmix .

Step 2: Inherit data from P1

1. for each depot belonging to set;

2. λ1: Copy the sequence of customer visits
from Vd(P1) to Vd(C );

3. λmix : Randomly (uniform distribution) se-
lect two chromosome-cutting points α and
β; copy the α to β substring of Vd(P1) to
Vd(C ).

Step 3: Inherit data from P2

1. for each depot d ∈ λ2 ∪ λmix , selected in
random order, consider each customer visit
n in Vd(P2);

2. if the supply of the depot is sufficient then
copy it at the end of Vd(C ).

Step 4: Complete customer services

1. Create a sequence of customers with posi-
tive demand, decreasing in the number of
unassigned products;

2. for each customer;

3. order the depots with respect to the dis-
tance;

4. sequentially try to place P products in the
depots;

5. if the supply of the depot is sufficient then
copy it at the end of Vd(C );

6. while not all customers are allocation re-
peat (1) - (5) for P = P, ... , 1.
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4.5 Education

A standard component of a Genetic Algorithm is
mutation which aims to increase the variety in genetic
information in the population. In our algorithm we
include a mutation in the form of education. This
education procedure is more radical than standard
mutation since it tries to improve offspring. We base
our education on Vidal et al. (2012) in which nine
different local-search procedures are implemented
consisting of different versions of insertions, swaps,
and 2-opt. Since we face customers with demand for
multiple products it is more difficult to, for example,
swap customers between depots. In fact, in most
cases this results in infeasible solutions. To overcome
this problem we introduce an additional check that
validates, before swapping customers, whether their
demands match the inventories in the corresponding
depots. Next to that, we observed that some of the
procedures used by Vidal et al. (2012) consumed
relatively much computation time without increasing
solutions significantly and are therefore not suitable
for our MDMPVRP. Then, our education consists of
the following four procedures. The first procedure is
the simple local-search algorithm two-opt. Second,
we have an insertion procedure that randomly inserts
customers in routes starting from the same depot only
if this results in a feasible solution with a lower ob-
jective value. Furthermore, we have two swap moves.
The first swap move interchanges two customers
assigned to the same depot whereas the second
switches customers assigned to different depots within
a certain neighborhood. Again, these moves are only
performed if this results in a feasible solution with
a lower objective value. For all moves the following
holds. Only if all customers have been considered
consecutively and no improvement has been found
the procedure stops. Then, the education procedure,
given by Algorithm 3, consists of performing all four
moves in random order. Only if all moves have been
consecutively performed without improvement the
education stops.

Algorithm 3

1. while no improvement has been found randomly
perform:

(a) two-opt;

(b) insertion within depot;

(c) swap within depot;

(d) swap between depots;

2. if not all moves have been performed consecu-
tively then go to 1.

4.6 Population Management

The population consists of two sets corresponding to
feasible and infeasible solutions. The number of ele-
ments in each set depends on the size of the penalty
ω. If, for example, ω = 0, all solutions are represented
by their giant tours and the set of infeasible solutions
is relatively large. On the other hand, if ω = ∞,
the set of infeasible solutions is empty. Hence, the
number of feasible solutions is increasing in the size of
the penalty. To avoid convergence to either subset we
dynamically adjust the penalty parameter during the
execution of the main algorithm. The aim is to get
a solution space with a reference proportion, ξREF , of
feasible solutions. We monitor the current feasibility
proportion by considering the ratio of feasible solu-
tions after each 100 generated offspring, denoted by
ξT . The following adjustment is then performed every
50 iterations:

• if ξT ≤ ξREF − 0.05, then ω = 1.2 · ω;

• if ξT ≥ ξREF + 0.05, then ω = 0.85 · ω.

We impose a maximum size on both sub-populations
of λ+µ. As soon as one of the populations has reached
the maximum size we select the best µ unique solutions
with respect to their distance to proceed to the next
generation.

4.7 Parameter tuning

In the previous sections many parameters have been
introduced and discussed. The performance of the
main algorithm obviously depends on the values of
these, possibly correlated, parameters. Due to lim-
ited time it was not possible to test all possible com-
binations. Therefore, we considered those parameters
we expected to most significantly influence the perfor-
mance in terms of solution quality and computation
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Parameter Parameter name Range Final parameter

µ Population Size 50 50
λ Number of offspring in a generation 100 100
PRE education rate 0 0.01 0.1 0.3 0.05
ItNI number of iterations 100 200 500 500
ItDIV Diversify iterations ∞ ∞
ξ Reference proportion of feasible individuals 0.3 0.3
ω penalty 0.1 1 10 10

Table 3: Tuning Results

time. This selection is based on gained experience
while testing the algorithm and on insights provided
by Vidal et al. (2012). Table 3 shows all parameters
used in the algorithm and their final value. The tested
parameters are the number of offspring, ItNI , the ed-
ucation rate, PRE , and the starting penalty, ω. The
parameters that were not tested are the population
size µ, the number of offspring in a generation, λ, the
number of iterations before diversification, ItDIV , and
the reference proportion of feasible individuals, ξREF .
Vidal et al. (2012) use µ = 25 to create an initial
population size of 100 individuals. Since the initial-
ization procedure does not require significant amounts
of computational time and to ensure a varied popula-
tion we set µ equal to 50. The population size and
the number of offspring in a generation, λ, are re-
lated to each other since their sum is the maximum
sub-population size µ + λ, λ was set to λ = 100,
based on Vidal et al. (2012). The education rate PRE

was tested for four different values, PRE = 0, which
means that no offspring is educated, PRE = 0.01,
PRE = 0.1, and PRE = 0.3. Vidal et al. (2012) use
an education rate of 1 implying that all offspring are
educated with local search procedures. Since these
local search procedures are very time consuming, es-
pecially for the larger instances, we did not test the
algorithm for higher rates than PRE = 0.3. We tested
these rates on 100 different instances with the num-
ber of customers ranging from 50 to 120, the number
of depots varying from 2 to 5 and the number of dif-
ferent products ranging from 1 to 5, and a maximum
travel time of 285. The depots and customers con-
tained in the set V are situated in the Cartesian plane

such that vi ∈ [0, 100] × [0, 100]. We found that the
computation time linearly increased in the education
rate. Since higher rates did not improve solutions sig-
nificantly we chose a value of PRE = 0.05 to find
higher quality solutions without increasing computa-
tion time too much. The number of iterations ItNI
equals the total number of generated offspring and
was tested for the values 100, 200, and 500. Using
ItNI = 500 resulted in the best solution quality while
the computation time was still acceptable. Vidal et al.
(2012) use ItDIV = 0.4ItNI , where ItNI > 104. Since
the diversify procedure only makes sense after a lot of
iterations we decided to never diversify a population.
To search on the boundaries of feasibility, the reference
proportion of feasible individuals in the population was
set to ξ = 0.3. For the starting penalty, ω, we tested
three different values such that ω ∈ {0.1, 1, 10}. The
test showed that for smaller instances ω = 0.1 per-
formed better while for larger instances ω = 10 was
preferred. The final value was set to ω = 10 to make
the algorithm better suitable for larger instances.

5 Solution Quality

Since the particular setting of the MDMPVRP we
consider is not discussed earlier in literature, there
are no test instances to benchmark the quality of our
algorithm. Hence, we used a set of 1000 self generated
instances. We varied the number of products from
P = 1 to P = 5, the number of depots from D = 2 to
D = 5, and the number of customers from N = 50 to
N = 140. The depots and customers contained in the
set V are situated in the Cartesian plane such that
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Initialization (average) GA (average)
Instances Depots Customers Distance Comp. time (s) Distance Comp. time (s)

1-100 4 140 1545.11 30.59 1284.95 2649.03
101-200 3 140 1474.10 44.51 1231.36 4150.95
201-300 4 100 1355.96 15.80 1120.62 727.81
301-400 3 100 1272.30 20.58 1063.72 1067.62
401-500 4 80 1186.86 10.21 988.17 327.00
501-600 3 80 1124.57 12.98 936.97 464.70
601-700 2 80 1051.93 20.62 889.71 849.95
701-800 3 60 975.97 7.86 825.28 201.47
801-900 2 60 908.33 11.19 782.45 302.83

901-1000 2 40 749.81 5.41 653.57 93.43

Table 4: Solutions and computation time

vi ∈ [0, 100] × [0, 100]. The maximum travel time of
all instances is 285. In Table 4 the features of the
instances are summarized. We have 10 groups, each
of size 100, with a different number of depots and/or
number of customers. For each group the number of
products increases by one every 20 instances. That is,
instances 1-20 are all with 1 product, instances 21-40
all have 2 products and instances 81-100 all have 5
products. The algorithm was implemented in R on an
Intel(R) Core Duo CPU computer with 2.33GHz clock.

To benchmark the performance of our algorithm
we compare our results with a more simple and more
straightforward heuristic. Since the initialization pro-
cedure of our Algorithm randomly assigns customers
we can consider the initialization as a naive heuristic.
Obviously, the crossover procedure should enhance
the solution quality. So, it is interesting to see the
difference in solution quality between the initialization
and crossover procedure. To inspect the performance
of the algorithm the travel distance is stored for
each generated individual. Consider, for example,
instance 401 with 4 depots, 80 customers and 1
product. The first 200 individuals are generated in
the initialization and individuals 201-700 are offspring,
see Figure 3. This Figure displays both feasible and
infeasible solutions. Note that feasibility depends
on the current value of the penalty. It is clear that
almost all offspring have a higher solution quality

than the individuals created in the initialization and
that the solution quality stabilizes quickly. When we
consider instance 500, see Figure 4, where customers
demand at most 5 different products instead of
1, we observe the following. Again, the solution
quality of the offspring is higher than the individuals
created in the initialization. However, contrary to
the convergence observed in Figure 3, we do not
identify a smooth converging sequence. For both
instances we see that the offspring are better than the
initial individuals. This holds for all other instances
as well, which indicates that creating offspring makes
sense in terms of solution quality. Now, consider

Figure 3: Distance per individual for instance 401, con-
sisting of 4 depots, 80 customers and 1 product.

the solutions of the entire set of instances. For each
instance the algorithm returns a feasible solution with
the lowest distance for the current population. These
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Figure 4: Distance per individual for instance 500, con-
sisting of 4 depots, 80 customers and 5 products.

distances are presented in Figure 5. We observe that
the travel distance decreases, on average, with each
group of 100 instances, which is intuitive since the
number of customers and/or depots decreases every
100 instances. Another observation is that within
each group the travel distance increases. This is
a natural consequence of increasing the number of
different products every 20 instances, resulting in
more complex and longer routes. The same pattern
holds for the computation times, given in Figure 6.
What immediately stands out is that the computation
time of the first 200 instances is extremely high,
ranging from 20 minutes to almost 3 hours. This is
due to the education procedure which is extremely
time consuming for larger instances. In the set of
instances we used for parameter tuning we did not
encounter these extreme computation times. One
explanation is that in the tuning set the largest
number of customers was 100 whereas in the test
set we considered instances up to 140 customers.
By considering no education, we were able to solve
each instance within 20 minutes, see Section 6.
The computation time for the other instances is on
average 504 seconds. For each group of instances the
average best initial solution, the average computation
time, the final solution, and the computation time
are given in Table 4. For the initialization it seems
that for instances with the same number of customers
but with different number of depots the computation
time is less when there are more depots, which is a
counter intuitive result. A possible explanation is that
since it is harder for the algorithm to find a feasible

combination of customers per depot when there are
less depots, we find more split customers. When we
look at the computation times for the entire algorithm
we see the same pattern as for the initialization
procedure. This can be explained by the same reason
as for the initialization since the crossover procedure
assigns left-over customers to depots in the same
manner as in the initialization procedure.
All the results can be found in the accompanying
excel file.

Figure 5: Distance per instance.

Figure 6: Computation time per instance.

6 Experimental insights

The computation time was discussed in Section 5. For
some instances we encountered extremely high com-
putation times, up to almost 3 hours. Most likely this
was due to the education procedure. To test the im-
pact of the education procedure on the solution quality
and the computation time we recalculated these val-
ues without the education procedure, i.e., PRE = 0,
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With education Without education

Instance Distance Comp. Time Distance Comp. Time
198 1399.61 10269.96 1386.20 1172.40
181 1353.39 8338.95 1350.50 1182.44
139 1187.43 7664.70 1186.03 1123.08
170 1386.74 7551.63 1525.70 1299.4
148 1309.61 7271.61 1321.29 1099.7
195 1284.56 7204.31 1311.57 1089.28
171 1297.68 7103.85 1270.07 1191.28
147 1248.31 6950.35 1286.81 1416.47
120 1110.21 6871.47 1150.42 1252.74
192 1457.37 6653.20 1439.14 1113.00

Table 5: Comparison solution quality and computation time with PRE ∈ {0, 0.05}

for the instances with a computation time over one
hour. In Table 5 the first 10 worst case instances, in
terms of computation time, are given together with
their initial distance and computation time and their
new distance and computation time. Without much
change in distance the computation time reduces sig-
nificantly with a factor 6 on average. Also, we see
that some solutions are even better than the origi-
nal solutions. Another parameter that influences the
computation time is the rate at which the penalty ω
is updated. Currently, the penalty is updated every 50
offspring. As discussed in 4.6, the infeasible popula-
tion or the entire population has to be updated when
the ratio of feasible solutions ξT is, respectively, lower
or higher than the reference ratio ξREF . Updating the
(sub)population is relative costly in terms of computa-
tion time. We computed instance 500 again but now
with ItNI = 10, 000 iterations and recorded the penalty
change. The returned solution now has an objective
value of 1034 instead of 1055 found for the old so-
lution. In Figure 7 we see that in contrast to Figure
4 the distance corresponding to the best solution be-
comes lower when increasing the number of iterations.
Again, note that there are also infeasible solutions in
the population. In Figure 8 we see that the penalty ω
converges from its starting value of ω = 10 to around
ω = 0.1 and stabilizes after 28 updates. This means
that the population needs 28 · 50 = 1400 iterations to
converge to its preferred ratio of feasibility ξREF . In

this run only 155 updates occurred, this means that for
45 penalty checks the penalty was inside the preferred
range of ξREF ± 0.05. This implies that the instances

Figure 7: Distance per individual for instance 500 with
10,000 iterations.

used for parameter tuning were not representative for
the benchmark set of instances since the education
procedure requires more time for larger instances. To
save computation time the penalty ω could be adjusted
right after the initialization phase to its right value to
save the computation time for the convergence of the
penalty. Furthermore, we see that increasing the num-
ber of iterations ItNI results in better offspring.
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Figure 8: Penalty adjustment behaviour for instance
500.

7 Conclusion

We proposed a new Genetic Algorithm to solve various
instances for the Multi-Depot Multi-Product Vehicle
Routing Problem (MDMPVRP). In this problem we
consider a set of customers with known demand for
multiple products. The supplies are distributed over
multiple depots and are to be transported by an unlim-
ited fleet of vehicles. Vehicle capacity does not impose
limits in practice, but there is a maximum travel time
T per vehicle. Due to the lack of available literature
in the Vehicle Routing Problem with multiple prod-
ucts we used current state-of-the-art meta-heuristics
to construct a Genetic Algorithm capable of solving
the MDMPVRP. The Algorithm allows a relaxation of
the maximum travel time constraint to find solutions
on the borders of feasibility. In order to do so, we use a
penalty factor to punish infeasible solutions and control
the ratio of feasible solutions in the entire population.
Since we could not compare results with literature
benchmarks, we randomly created various instances.
These instances differ in the number of customers, de-
pots, and products. Results showed that our algorithm
significantly performs faster in case fewer depots are
considered. On the contrary, the number of different
products did not influence results in terms of running
time. If more than 100 customers are considered up-
dating penalized costs and the education procedure

turned out to be too time consuming. Therefore, we
suggest to consider alternative ways of applying muta-
tion, coping with the referenced proportion of feasible
solutions, or to find faster ways to educate solutions.
Making the algorithm faster would allow us to increase
the number of offspring and thereby find better solu-
tions. This would also result in other values for the
parameters since at this point the computation time
constrains the parameter values and thus the poten-
tial of the algorithm. As an alternative to solving the
MDMPVRP, a change in inventory policies may be
considered. That is, it could be possible that higher
inventory levels at each depot ensure that the prob-
lem can be solved as a MDVRP, which results most
likely in shorter routes. Hence, one can consider the
trade off between additional costs associated with in-
creased inventory and lower routing costs due to less
split customers. Therefore, one could also consider a
more generalized version of the MDMPVRP in which
the inventory policy per depot is also considered, or at
least compare the results of the two approaches inde-
pendently.
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A Appendix

The Multi-Depot Multi-Products Vehicle Routing Problem as described in Section 2 can be formulated by the
following Mixed Integer Linear Program.

Sets
V set of vertices
E set of edges
R set of routes
N set of customers
D set of depots
P set of products

Parameters
cij vi , vj ∈ V cost of traveling edge eij ∈ E
qnp n ∈ N; p ∈ P demand of customer n for product p
sdp d ∈ D; p ∈ P supply in depot d of product p
T maximum travel time

Variables
xijrd vi ∈ V ; vj ∈ V ; r ∈ R; vd ∈ VDEP vj is immediately visited after vi in route r starting at depot d
ynpd n ∈ N; d ∈ D; p ∈ P link demand of customer n for product p to depot d

Objective

min
∑
vi∈V

∑
vj∈V

∑
r∈R

∑
d∈VDEP

cijxijrd (1)

Constraints

sdp −
∑

vn∈V CUST

ynpdqnp ≥ 0 vd ∈ VDEP ; p ∈ P (2)

∑
vd∈VDEP

ynpd = 1 vn ∈ V CUST ; p ∈ P (3)

∑
vd∈VDEP

xid ′rd = 0 vd , vd ′ ∈ VDEP ; d 6= d ′; r ∈ R (4)

∑
vi∈V

xijrd −
∑
vj∈V

xjird = 0 vj ∈ V ; vd ∈ VDEP ; r ∈ R (5)

∑
vi∈S

∑
vj∈S

xijrd ≤ |S | − 1 S ∈ V CUST ; |S | ≥ 2; vd ∈ VDEP ; r ∈ R (6)

∑
vi∈V

∑
vj∈V

cijxijrd ≤ T vd ∈ VDEP , r ∈ R (7)

xijrd ∈ {0, 1} vi ∈ V ; vj ∈ V ; vd ∈ VDEP ; r ∈ R (8)

ynpd ∈ {0, 1} vn ∈ V CUST ; p ∈ P; vd ∈ VDEP (9)
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By adding constraint 2 we guarantee that at each depot the demand for the products of the customers assigned
to that depot can be supplied. Constraint 3 makes sure that for each customer all different products are covered
by exactly one depot. Furthermore, constraint 4 makes sure that a route starting from a certain depot cannot
visit any other depot. The constraint 5 guarantees flow conservation. Sub-tours are eliminated by including
constraint 6. The constraint 7 makes sure that routes cannot exceed the maximum travel distance.
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1 Introduction

There are many practical examples of vehicle routing problems where inventory plays
a role. Consider pharmacies that deliver medicines to their clients, or libraries that
deliver books at home. In these examples, planners are not only concerned with the
route length, they need to consider the inventory level as well.

These type of problems can be seen as an extension of the classical vehicle routing
problem. A vehicle routing problem concerns a number of customers and a number
of vehicles that all start from one depot. Routes need to be determined such that
each customer is visited by one vehicle. Now consider there to be multiple depots,
each with a number of vehicles. Furthermore, consider there to be multiple types
of product. The depots have a limited amount of inventory and the customers have
a given demand for each product. The customers must receive the products they
demand, but each depot cannot deliver more than it has in stock. An important
difference is that customers can now receive their products from more than one
vehicle, we call this split deliveries. These problems can be referred to as multi-
depot vehicle routing problems with inventory limitations (MDVRPI).

In this paper, we provide a heuristic approach for solving these multi-depot vehi-
cle routing problems with inventory limitations. We provide an algorithm based on
variable neighborhood search (VNS), which is a form of local search where we sys-
tematically alternate between different types of neighborhoods. We give a detailed
description of our implementation of VNS to solve the MDVRPI. Furthermore, we
test our algorithm on a set of randomly generated test instances. For comparison, we
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also provide solutions based on a very simple method. We compare objective values
and computation times.

To give a overview of the relevant literature surrounding this problem, we start with
the classical VRP. The classical VRP was first introduced by Dantzig and Ramser
(1959). Since then, many studies have focused on one of the extensions or variants
of the classical VRP. Overviews of the many VRP variants are given by Toth and
Vigo (2002), Golden et al. (2008), Vidal et al. (2013). A part of the extensions to
the VRP include multiple depots. Variants with multiple depots and the possibility
of split deliveries are first introduced by Dror and Trudeaut (1989). For an overview
of the VRPs with split deliveries, see Archetti and Speranza (2012). As mentioned
earlier, as to our knowledge no variants that exist in current literature have considered
inventory limitations.

Lenstra and Rinnooy Kan (1981) showed that the VRP and most of its variants
are NP-hard problems. At the end of Section 2 we will show that the MDVRPI is
NP-hard by giving a polynomial sized reduction from VRP. Since most of the VRP
variants are NP-hard, it is very common to use a heuristic approach to solve the
problem. We focus on one heuristic approach in particular, called variable neigh-
borhood search. VNS is a local search method where we systematically alternate
between different types of neighborhoods, it was first introduced by Mladenović and
Hansen (1997). A few years later, Polacek et al. (2004) used a VNS based algorithm
to solve a VRP variant with multiple depots and time windows. Salhi et al. (2013)
used a VNS based algorithm for solving a VRP variant with multiple depots and a
heterogeneous fleet, their algorithm found better solutions for 23 out of 26 problem
instances published in the literature. It was their work that inspired us to use a VNS
based algorithm for the MDVRPI.

The remainder of this paper is organized as follows. A formal description of the
problem is given in Section 2. The variable neighborhood search algorithm is de-
scribed in detail in Section 3. Section 4 then gives the computational results of using
the algorithm on a number of randomly generated instances of the MDVRPI. The
conclusions of this paper and suggestions for further research are presented in Section
5.

2 Problem formulation

In this section, we give a formal definition of the problem, including all the assump-
tions made and the integer linear programming formulation.

Consider a set of depots and a set of customers, with known distances between each
of them. Furthermore, consider a number of products, each depot has a given amount
of inventory of these products and each customer has a given amount of demand for
these products. Each depot has vehicles available for transporting the products from
the depot to the customers. The objective is to minimize the transportation costs
under the conditions that all demand must be fulfilled, each depot cannot deliver
more products than it has in stock, and all routes should not exceed a given maximum
length. One assumption that we make in the problem definition, is that the total
inventory is enough to fulfill the total demand. In addition, it is allowed to have split
deliveries, which means that a customer can be served from more than one depot.
The task is to select the amount that each depot delivers to each customer and to
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select the routes that accompany this delivery plan.

We make three main assumptions. First, we assume that each depot has an unlimited
amount of vehicles available. Second, we make the assumption that each vehicle has
an unlimited capacity. These assumptions are reasonable when we consider the
practical examples of the pharmacy and the library. In these examples, vehicle
capacity and amount of vehicles does not impose limits in practice. Last, we assume
that the transportation costs are proportional to the sum of route lengths, i.e. we
do not consider any fixed costs for using a truck.

Before giving the integer linear programming formulation (ILP) of the MDVRPI, we
introduce the following variables.

N : the total number of customers,

M : the total number of depots,

L : the total number of products,

Qip : customer i’s demand for product p,

Ikp : inventory level of product p at depot k,

Dijk : distance from customer i to j when starting from depot k,

L : maximum route length,

Rk : the number of routes originating from depot k,

aikp : amount of product p delivered from depot k to customer i,

xijrk : binary variable equal to 1 if edge i-j is in route r from depot k,

equal to 0 otherwise.

Note that the distances, given by Dijk, only differ among depots, that is when i = 0
or j = 0. When i ≥ 1 and j ≥ 1, the distances Dijk do not depend on the depot
k. That is, only the distances from depot to customers and vice versa change, the
distances between customers remain the same, regardless of what depot the route
starts in.

The ILP formulation is given by

min
M∑
k=1

Rk∑
r=1

N∑
i=0

N∑
j=0

Dijk · xijrk, (1)

subject to

N∑
i=0

xijrk =
N∑
i=0

xjirk ∀ j = 0, .., N, r = 1, .., Rk, k = 1, ..,M, (2)

N∑
i=0

N∑
j=0

Dijk · xijrk ≤ L ∀ r = 1, .., Rk, k = 1, ..,M, (3)

ajkp ≤
Rk∑
r=1

N∑
i=0

xijrk ·Qjp ∀ j = 1, .., N, k = 1, ..,M, p = 1, .., L, (4)

M∑
k=1

aikp = Qip ∀ i = 1, .., N, p = 1, .., L, (5)

N∑
i=1

aikp ≤ Ikp ∀ k = 1, ..,M, p = 1, .., L, (6)
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Rk∑
r=1

N∑
i=0

xijrk = 1 ∀ j = 0, .., N, k = 1, ..,M, (7)

∑
vi∈S

∑
vj∈S

xijrk ≤ |S| − 1 ∀ r = 1, .., Rk, k = 1, ..,M ; (8)

S ⊆ V \ {0}; |S| ≥ 2,

Rk ∈ N ∪ {0}, ∀ r = 1, .., Rk, k = 1, ..,M, (9)

ajkp ∈ N ∪ {0}, ∀ j = 0, .., N, k = 1, ..,M, p = 1, .., L, (10)

xijrk ∈ {0, 1}, ∀ i, j = 0, .., N, r = 1, .., Rk, k = 1, ..,M. (11)

The objective function (1) is given by the sum of lengths of all routes from all depots.
Constraints (2) represent the flow conservation constraints, stating that any vehicle
that arrives at a customer must also leave that customer and any vehicle that leaves
a depot must also return to that depot. Constraints (3) make sure that the length of
each route does not exceed the maximum route length. The constraints given by (4),
(5), and (6), deal with the delivery of products to customers. Constraints (4) make
sure that the amount delivered from a depot to a customer can only be positive when
that customer is visited in one of the routes originating from that depot. When the
customer is not visited in any of the routes from that depot, the right hand side is
equal to zero and the amount delivered is also forced to be zero. When the customer
is visited in at least one of the routes from that depot, the right hand side is at least
equal to the demand of that customer and therefore does not restrict the amount
delivered. Constraints (5) make sure that the total amount delivered to a customer
is exactly equal to the demand of that customer. Constraints (6) make sure that
the total amount that a depot delivers to customers does not exceed the inventory
of that depot. Constraints (7) tighten the formulation by not allowing customers to
be visited by more than one route from the same depot. When a depot delivers a
positive amount to a customer, that customer must be in at least one of the routes
from that depot. However, since the capacity of the vehicles is not an issue, we only
need the customer to be in one of the routes from that depot, a customer being
in more than one route would always be superfluous. Constraints (8) are standard
subtour elimination constraints. Finally, constraints (9), (10), and (11), define the
range of our decision variables.

The MDVRPI is an NP-hard problem, which we will show by a reduction from the
classical VRP. As mentioned before, the VRP is a known NP-hard problem (Lenstra
and Rinnooy Kan, 1981). We claim that the VRP is polynomial-time reducable to
the MDVRPI. Consider any instance of VRP with N customers. We could formulate
it as a MDVRPI with N customers, one depot and one product. Let us give each
customer a demand of one unit and give the depot an inventory of N units. Note
that the depot has enough inventory to deliver to all N customers, hence inventory
limitations do not play a role anymore. We have now reduced the instance of the
VRP to an instance of the MDVRPI, where the routes in the solution of the MDVRPI
directly correspond to the routes in the solution of the VRP.

3 A variable neighborhood search algorithm

In this section an approach to solve the MDVRPI is described. The algorithm consists
of several heuristics. First, the general structure of the heuristic is explained. Then,
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the heuristics are explained in more detail and, finally, all parameters and their values
are discussed.

3.1 Heuristic structure

Figure 1 shows the pseudo code of the algorithm. The algorithm starts with an
initialization phase, that is described in Section 3.2.1. Then the algorithm loop
(ALG loop) starts for Max ALG iterations and it consists of two parts: the variable
neighborhood search and a diversification procedure.

The variable neighborhood search starts with “shaking” the current solution after
which several local search heuristics are applied. The heuristics used in the variable
neighborhood search are explained in more detail in Sections 3.2.2 and 3.2.3. If the
variable neighborhood search finds an improvement, it is repeated with the same
shaking heuristic for a maximum of Max count times. If it does not find an improve-
ment, or when the same shaking heuristic is used for Max count times, the variable
neighborhood search is repeated with the next shaking heuristic, until all shaking
heuristics have been used.

At the end of each loop of the variable neighborhood search, it is checked whether
the current solution is better then the best known solution or not. Finally, the
diversification procedure, as described in Section 3.2.4, is applied to search in a
wider range of the feasible region.

Initialization; 
ALG_loop = 0; 

while ALG_loop <= Max_ALG do 
 |    ALG_loop = ALG_loop + 1; 
 |    k = 1; 
 |    Count = 0; 

 |    while k <= Max_k do 
 |     |    Count = Count + 1; 
 |     |    Shaking(k); 
 |     |    Insert10_interroute; 
 |     |    Swap_interroute; 
 |     |    Two_opt; 
 |     |    Swap_intraroute; 

 |     |    Insert10_intraroute; 

 |     |    if Improvement of Solution then 
 |     |     |    if Count == Max_count then 
 |     |     |     |    k = k + 1; 

 |     |     |    end  
 |     |    else 
 |     |     |    k = k + 1; 

 |     |    end 
 |    end 
 |    if Solution better than BestFound then 
 |     |    BestFound = Solution; 

 |    end 
 |    Diverse; 

end 
Return BestFound 

Figure 1: Pseudo code of the algorithm
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3.2 Detailed heuristics

In this section we will describe the heuristics in the order of use by the algorithm.

3.2.1 Initial solution

The initialization phase assigns the customers in order of relative closeness to their
nearest depot. Customers that are not assigned to their nearest depot are considered
borderline customers. The relative closeness is measured by the distance to the
nearest depot divided by the distance to the second nearest depot. Customers are
only assigned to their nearest depot if the distance to the nearest depot divided by the
distance to the second nearest depot is smaller than Epsilon. If a depot’s inventory
restriction does not allow a customer to receive all his demand from that depot,
the customer will receive only the demand that can be met and for the remaining
demand the customer will be considered a borderline customer.

One initial route per depot is created using the nearest neighbor algorithm. If the
distance of this route is larger than the maximum allowed distance Max Dist, the
route will be split into several routes. These splits are made at the point where
the initial route cannot reach the next customer without exceeding the distance
restriction. Then, the borderline customers are inserted in a route of the nearest
depot that can meet their demand using minimal insertion. If a borderline customer
cannot be inserted in any of the routes of the depot, a new route is created.

3.2.2 Shaking heuristics

Three heuristics are used to ‘shake’ the current solution (so Max k=3) and search
a wider range of solutions in the feasible region. We will concisely describe, in
order of use, the 1-1 interchange, the 2-0 shift and the perturbation. If any of the
shaking heuristics cannot find a feasible shaking, the same heuristic is tried again for
a maximum of Max Shake times. The shaking heuristics immediately found feasible
shakes most of the times. However, in the case when the shaking heuristic did not
find a feasible shake immediately, it was able to find one within very few iterations.
So, Max Shake=4 was considered enough.

The 1-1 interchange: this heuristic tries to randomly interchange a customer from
one depot with a customer from another depot. The interchange is limited to the
routes the customers originate from. First a random customer is picked from a
random route. Then all possible routes from other depots are checked in a random
order if they have a customer that can be interchanged with the first customer. If
none of the routes of the other depots have a customer that can be interchanged, the
routes from the same depot are considered.

The 2-0 shift : in a random route a random pair of adjacent customers is selected.
Then it is tried to move them to a route of a random other depot. If this is not
possible due to inventory or route length restrictions, it is tried to move the pair to
another route of the same depot.

The perturbation: the main idea for this heuristic is from Salhi and Rand (1987). A
random customer from a random route is selected and is inserted in a route from
another depot without considering inventory limits using cheapest insertion. Then,
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a random customer is picked from all customers served by that depot for which
removal from that depot makes that the inventory constraints are not violated. For
this customer we check if this customer can be inserted in a route from other depots
without violating inventory and route length constraints.

In the case of only two depots, the perturbation is very similar to the 1-1 insertion.
So, in order to save some computation time, the 1-1 insertion is used again instead
of the perturbation.

3.2.3 Local search heuristics

Our algorithm uses seven local search heuristics, which are descried in order of ap-
pearance in the local search: 1-insertion interroute (inter- and intradepot, swap
interroute (inter- and intradepot, 2-opt, swap intraroute and 1-insertion intraroute.
This order of local search neighborhoods is chosen based on the level of complexity
of the neighborhoods. Salhi and Sari (1997) showed this order to be an effective
one. If a local search heuristic improves the solution, it is repeated until no further
improvement is made or when it reaches a maximum number of loops. This maxi-
mum number of loops is set equal to 150 for all local search heuristics, due to small
running times and the fact that this maximum is rarely met.

1-insertion interroute (inter- and intradepot): every customer in every route is sys-
tematically checked for removal from that route and insertion in any other route. The
interdepot version only considers routes from other depots and therefore has to check
for inventory restrictions as well. The intradepot only considers other routes from
the same depot. For both versions, the best insertion is chosen among all feasible
options.

Swap interroute (inter- and intradepot): every customer in every route is systemat-
ically checked for a swap with another customer from an other route. As with the
1-insertion, the interdepot version only considers routes from other depots and has
to check inventory restrictions in both depots. The intradepot only considers other
routes from the same depot. For both versions, the best insertion is chosen among
all feasible options.

2-opt : this local search heuristic was first proposed by Croes (1958). Two edges are
taken from a route and replaced by two other ones, such that the result is a route
again. This is evaluated for Num 2opt random combinations of two edges. The
combination with the greatest improvement is chosen to be the new solution. By
empirical testing we found that the following setting for Num 2opt gives a good bal-
ance between the chance of finding improvements and computation time: Num 2opt
= min{800, c2}, where c is the number of customers in the route.

Swap intraroute: is similar to the swap interroute, but considers only swaps within
the same route.

1-insertion intraroute: is similar to the 1-insertion interroute, but considers only
insertions within the same route.

3.2.4 Diversification

When the local search has finished, it is checked whether it yielded a better solution
than the current best solution. Then, to search in a broader range of the feasible
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region, a diversification procedure is applied.

The diversification procedure is used to change each of the routes. Therefore, for
every depot one giant tour is created by concatenating all its routes. Then, a pair of
adjacent customers (c1, c2) is chosen which both were not the first or last customer of
a route. For each of the customers a new giant tour is created, using these customers
as the first customers of the tour. So, one tour is given by {c2, c2 + 1, . . . , c1 − 1, c1}
and the other tour is given by {c1, c1 − 1, . . . c2 + 1, c2}. Then, these tours are split
in new routes if necessary in the same way as described in Section 3.2.1. Finally, the
set of routes with the smallest total distance is selected.

3.3 Parameter tuning

A test set of one hundred instances was used for parameter tuning. The character-
istics of these instances are given in Table 1.

Table 1: Overview of one hundred test instances. Five instances were used for each
combination of number of depots, products and customers.

Number of customers Number of products Number of depots

50 1,2,3,4,5 2
70 1,2,3,4,5 3
100 1,2,3,4,5 3
120 1,2,3,4,5 4

Initial solutions were computed for several values of Epsilon. In fifty of the hundred
instances, the best initial solution was given for Epsilon = 1, that is, borderline
customers are not used in the first place. The other fifty instances have an average
best value of Epsilon of 0.824. The value of 0.9 for Epsilon appears to be best in
thirty cases and, since it is almost equal to the average value of optimal Epsilon, we
take 0.9 as the optimal setting for Epsilon.

Using a test run with a very large value for Max ALG (180) we determined for what
amount of loops the algorithm stopped finding better solutions regularly, that is when
no 1% decrease in the objective value was found for 15 iterations. The results differed
a lot among the instances and therefore Max ALG is made problem dependent. It
is given by 3(D2) + 4P , where D is the number of depots and P is the number of
problems.

4 Results

The algorithm was written in Matlab and the experiments were run on a computer
with an Intel Core 2 Duo E6550 processor with 2.33 GHz and 2 GB RAM. One
thousand instances were run and their characteristics are given in Table 2.

Since there is no literature on this problem, the performance of the algorithm is
compared with a simple heuristic, namely our initial solution. Tables 3 and 4 give
a summary of the results obtained by the algorithm and the simple method, respec-
tively. Each of the objective values and computation times is an average over twenty

ITRACT: Routing vehicles with inventory constraints

40



Table 2: Overview of one thousand instances. Twenty instances were used for each
combination of number of depots, products and customers.

Number of customers Number of products Number of depots

40 1, 2, 3, 4, 5 2
60 1, 2, 3, 4, 5 2, 3
80 1, 2, 3, 4, 5 2, 3, 4
100 1, 2, 3, 4, 5 3, 4
140 1, 2, 3, 4, 5 3, 4

instances with that set of characteristics. The average computation times of the al-
gorithm range from half a minute for the smallest problems to ten and a half minutes
for the largest problems, which is fast enough for most real world applications.

Table 3: Average objective values and computation times in minutes of the algorithm

Products: 1 2 3 4 5
Customers Depots Obj CPU Obj CPU Obj CPU Obj CPU Obj CPU

40 2 599 0.45 618 0.68 629 0.52 655 0.73 678 0.97
60 2 739 0.72 758 0.73 765 1.27 779 1.55 790 1.07
60 3 710 1.28 739 1.38 774 2.00 781 1.57 834 2.15
80 2 860 1.08 857 1.20 867 1.58 883 1.20 903 1.85
80 3 843 1.98 854 1.93 890 2.12 884 3.65 927 2.85
80 4 810 3.78 847 4.10 865 3.62 903 3.02 954 3.73
100 3 926 3.03 954 2.48 1024 4.05 1000 3.30 1039 4.15
100 4 923 10.27 950 4.30 997 5.23 1002 4.92 1056 4.65
140 3 1096 3.57 1119 4.42 1186 5.85 1187 9.35 1246 7.85
140 4 1078 7.80 1113 10.28 1154 7.75 1202 7.18 1241 9.17

Table 4: Average objective values and computation times in seconds of the simple
method

Products: 1 2 3 4 5
Customers Depots Obj CPU Obj CPU Obj CPU Obj CPU Obj CPU

40 2 911 0.01 944 0.01 976 0.01 1035 0.01 1067 0.01
60 2 1110 0.01 1238 0.01 1284 0.01 1230 0.01 1247 0.01
60 3 1168 0.02 1319 0.02 1425 0.02 1351 0.02 1493 0.02
80 2 1317 0.01 1373 0.01 1440 0.01 1406 0.01 1498 0.02
80 3 1481 0.02 1538 0.02 1629 0.02 1541 0.02 1698 0.02
80 4 1518 0.02 1658 0.02 1704 0.02 1842 0.02 1900 0.02
100 3 1633 0.02 1679 0.02 1902 0.02 1961 0.02 1911 0.02
100 4 1705 0.02 1889 0.02 2036 0.02 1977 0.02 2209 0.03
140 3 1911 0.02 1984 0.02 2217 0.03 2330 0.03 2374 0.03
140 4 1917 0.03 2211 0.03 2317 0.03 2490 0.03 2440 0.03

Clearly, the objective values of the algorithm increase when the number of customers
and products increase. For the number of depots this cannot be said so easily: for
problems with fewer products the objective value decreases when there are more
depots, for problems with more products the objective value can increase when there
are more depots. This is caused by the fact that the distribution of the inventory is
more restrictive when there are more products.
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Figure 2: The objective values of the algorithm (blue circles) compared to the simple
method (red crosses) for all 50 instance types. The numbering of the instance types
follows the same order as in Tables 3 and 4, instance types 1 to 5 correspond to the
first row, instance types 6 to 10 correspond to the second row, etc.

The results are also depicted in Figure 2. On average the algorithm reduces the
objective value with 42,7%. The reduction was at least 14,5% and at most 63,9%.

To illustrate the improvement of the algorithm we depicted the solution of both
methods for one of the instances. Figure 3 shows the initial solution of instance 701
whereas Figure 4 shows the solution of the algorithm. This instance has one product,
three depots and sixty customers.

The initial solution was found in 0.02 seconds and has objective value 1242,72. The
solution has five routes; one from depot 1 and two from the other depots. It is
clearly not optimal, since routes cross themselves. Note that the upper left customer
is visited twice; once by the route from depot 1 and once from a route from depot 3.

The algorithm found the solution with objective value 673,10 in 83,93 seconds. It
only has one route per depot and no crossing routes at all. Optimality cannot be
proven, but it cannot be declared non-optimal upon inspection.
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Figure 3: Initial solution of instance 701, with objective value 1242,72
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D3

Figure 4: Algorithm solution of instance 701, with objective value 673,10
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5 Conclusions

We studied the multi-depot vehicle routing problem with inventory limitations. This
extension to the classical vehicle routing problem considers multiple depots, a limited
inventory at each depot and a known demand of each customer. Furthermore, the
problem considers multiple products and it allows for the possibility of split deliveries.
The goal is to minimize the total route length, while making sure that all demand
is satisfied. The problem was formulated mathematically and shown to be NP-
hard. The presented algorithm makes use of variable neighborhood search with
three neighborhoods and seven local search heuristics. A diversification procedure is
used to search in a broad area of the feasible region.

The algorithm was applied to one thousand instances of different sizes. The average
computation times range from half a minute for the smallest problems to ten and
a half minutes for the largest problems, which is fast enough for most real world
applications. The results are compared with the initial solution, which is in itself a
simple heuristic to solving this problem. The proposed algorithm based on variable
neighborhood search produces solutions with a 42,7% average decrease in route length
when compared to the simple heuristic.

The quality of the solutions has not been bench-marked against other solutions,
since no heuristic for this problem has been developed before. Furthermore, there is
no information about the quality of our solution compared to the optimal solution.
Therefore, a suggestion for further research is to determine good lower and upper
bounds on the optimal solution or to completely solve the problem to optimality.
This is even useful for only a part of the instances, i.e. the smaller instances, since
that will still give a better understanding of the quality of the algorithm presented
in this paper.

A second suggestion for further research is to adapt the algorithm such that it can
also handle practical problems where our three simplifying assumptions do not hold.
The adaptations could include the possibility of a limited vehicle fleet at each depot,
a maximum capacity for each vehicle, or to incorporate the fixed cost per vehicle in
the objective function.

A third suggestion is to consider a problem where we incorporate the inventory policy
in the decision process. In the multi-depot vehicle routing problem with inventory
limitations, it is often the case that not all customers can be served by their nearest
depot. These customer will have to be served by a more distant depot and that
will result in more costly routes. When the inventory level at each depot is higher,
more customers can be served by their nearest depot. The idea is to compare the
added costs when serving from a more distant depot to the added costs of having
more products in stock. Taking both factors into account, an inventory policy and
delivery plan could be determined such that total costs are minimized.
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