

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND

Biochar-

the key technology to close the carbon and nutrients cycle

Hans-Peter Schmidt, ithaka institute for organic carbon cycling, Switzerland

Biochar in Ghana 2009/2010

Abokobi – Felix Jenny und Kerstin Roessler

Biochar-Compost in Ghana

yield control versus biochar-substrate:

	2010	2011	2012	2013
S-Ghana	1.5	2	2.6	3
N-Ghana	0.9	1,8	2,4	

Abokobi – Felix Jenny und Kerstin Roessler

Biochar-Compost Ghana

50% Poultry Manure and 50% biowaste, cotton straw, sheabutter waste, rice husks

1 kg substrate / m2

Abokobi – Felix Jenny und Kerstin Roessler

The effects of charcoal compost on the plant growth (China)

Osaka Institute of Technology Makoto Ogawa

The effects of charcoal compost on the growth of soy bean.

Osaka Institute of Technology Makoto Ogawa

Peat substrate : BC-compost pumpkin

Kammann C, Schmidt HP, Schroeder M

University Giessen & **ithaka** institute

Calendula

Kammann C, Schmidt HP, Schroeder M

University Giessen & **ithaka** institute

Aerobic Composting with Biochar

Substrate	Compost	BC-Compost
Cow manure	5	5
Horse manure	0.6	0.6
Chicken manure	0.1	0.1
Straw	0.3	0.3
Biochar	0	1.5
clay soil	0.6	0.6
rock powder	0.07	0.07
compost	0.02	0.02
Total volume	6.7	8.2

Kammann C, Schmidt HP, Schroeder M

Nicotina benthamiana

above ground fresh biomass weight

Kammann C, Schmidt HP, Schroeder M

University Giessen & **ithaka** institute

Enhancing Crop Yields by Restoring SOC POOL

Table II. Potential of increase in food grains in the tropics and subtropics through improvement in soil quality by adopting recommended management practices which enhance the SOC pool

Crop	Region A		Yield (kg ha ⁻¹)) Increase in SOC pool by $0.5 \text{ Mg C ha}^{-1} \text{y}^{-1}$		Increase in SOC pool by $1 \text{ Mg C ha}^{-1} \text{ y}^{-1}$		
				Increase in yield (kg ha ⁻¹ y ⁻¹)	$\begin{array}{c} Productivity increase \\ (10^6Mgy^{-1}) \end{array}$	Increase in yield (kg ha ⁻¹ y ⁻¹)	$\begin{array}{c} Productivity \ increase \\ (10^6Mgy^{-1}) \end{array}$	
Wheat								
	Africa	8.9	1571	10-20	0.09-0.18	20-40	0.18-0.36	
	Latin America	9.0	2515	25-35	0.225-0.315	50-70	0.45-0.63	
	Asia	97.1	2535	15-25	1.455-2.43	30-50	2.91-4.86	

increase of SOC by 1 t / ha increases yields in developing countries

wheat:	20 – 70 kg / ha
corn:	30 – 300 kg /ha
rice:	50 – 60 kg /ha

Africa Latin America	20·1 0·2	670 1516	15-25 25-35	0·30-5·00 0·005-0·005	30–50 50–70	0.60-1.00 0.01-0.01
Asia	14-6	820	15-25	0.22-0.365 0.52-0.87	30-50	0.44-0.73 1.05-1.74
Beans (Phaseolus and Vign	a spp.)					
Africa	3.1	668	20-30	0.06-0.095	40-60	0.12-0.19
Latin America	8.0	743	20-30	0.16-0.24	40-60	0.32-0.48
Asia	14.7	640	15-25	0.22-0.37	30-50	0.44-0.74
				0.44-0.70		0.88-1.41
Soybean						
Africa	0.92	973	10-15	0.01-0.015	20-30	0.02-0.03
Latin America	24.0	2389	15-25	0.36-0.60	30-50	0.72-1.20
Asia	16.9	1398	10-15	0.17-0.25	20-30	0.34-0.51
				0.54-0.87		1.08-1.74
Total				11.89-19.74	_	23.78-39.48
				(15.8 ± 5.6)	_	(31.6 ± 11.1)

 1 g ha y^{-1} increase in SOC equals 0.02 per cent increase in SOC pool at 20 cm depth per year in soil with a bulk density of 1.3 Mg m^{-3} . The data on area and crop yield are from FAO (2000).

Soil Organic Carbon

$C : N : OP : S = 1 : 11 : 45 : 65^*$

to increase the **soil organic carbon content by 1%** in the upper 30 cm of a soil for 1 hectare:

> 27 t carbon (eq. 38 t biochar) 2.400 kg nitrogen 600 kg phosphorus 400 kg sulphur

Carbon N-P Fertilizer

	kç
Biochar	850
Ammonia-Nitrate	215
Urea	182
Diammoniumhydrogenphosphate	46
Phosphoric acid (75%)	92
Total amount of fertilzer	1385
water	655

in % of biochar					
Nmin [%]	Nmin [%] PO4 [%] P2O5 [%]				
20,0	11,8	8,8			

Fixing Carbon

increasing N,P-efficiency

Closing nutrient-cycles

liquid manure filtration

Fig. 1

solid-liquid separation

filtration of liquid manure through biochar

Continuous charging of biochar by nutrient rich liquids

Charging with liquid manure

1- 1,5 % BC in liquid manure

ithaka institute

Reducing NH3-losses, methane emissions, increases plant nutrient efficiency, decreases nutrient leaching and odors

Cumulative loss of NH3

Cumulative loss of NH₃ relative to the control:

- Slight increase for BC22
- 5-10% reduction for BC24
- Strong reduction for PSBC24 and PS (low pH of the slurry)

Figure 2: Cumulative ammonia loss during 8.5 h of measurement (21 days of storage) relative to Control.

BC - Biochar PS – Phosphoric acid

Cascading use of biochar Use it nine times – pay it only once

1. Silage Cascading use of biochar

1.

Charging biochar with malolactic bacteria and add

1 % BC to silage

ithaka institute

reducing mycotoxins and butyric acid, adsorption of pesticides and herbicides

Hof Holderstock – Wilhelmine & Bruno Koller

2. Feed additive Cascading use of biochar

2. 1 % BC for feeding Carbon-Feed

increases energy efficiency of digestion, decreases milk cells, adsorption of gram positive bacteria (botulisme), pesticides, herbicides, reducing odors, fixation of nutrients, improvement of barn climate

DELINAT Institut für Ökologie und Klimafarming

CarbonFeed

Ingredients: Wheat bran (40 %), biochar (15 %), sugar cane molasses, linseed, alpine herbs, corn flakes, wheat flakes, barley flakes, minerals

Water 43 %, raw proteins 7.5 %, raw ash 5.2 %, raw fibre 4.7 %, raw fat 1.7 %, sodium 0.03 %, calcium 0.08 %, phosphorous 0.5 %, magnesium 0.2 %, lysine 2.7 g/kg, methionine 1.0 g/kg

For cows, horses, chicken, pigs, sheep – dogs, cats ...

Zanzibar Red Colobus Monkey Eating Charcoal

Photo: Martin Harvey. CORBIS

The red colobus monkeys, Procolobus kirkii, eat charcoal, Zanzibar, Tanzania). These ndangered animals have specially dapted stomachs which enable hem to feed principally on leaves. hey eat charcoal from burnt tree tumps and branches to detoxify oisons (mainly phenolics) obtained rom their leafy diet and convert hem into proteines

Struhsaker, T.T., Cooney, D.O., Siex, K.S., 1997. Charcoal Consumption by Zanzibar Red Colobus Monkeys: Its Function and Its Ecological and Demographic Consequences. Int. J. Primatol. 18, 61– 72.

1% Biochar in Feed for Germany

13 Million cattle (650 000 t BC)
27 Million pigs (780 000 t BC)
2,4 Million sheep (43 000 t BC)
130 Million poultry (260 000 t BC)

1,7 Million tonnes biochar per year5 Million tonnes CO2 per year0,6% of annual CO2 emission in Germany

Adsorption of anti-bacteria, anti-infectica, antiparasitica, hormones, analgetica, pathogenes, herbicides, pesticides

Cost of annual animal drugs: 19.2 Billion US-Dollar worldwide

Reduction of methane emission caused by rumination

Figure 4. Reduction in methane due to biochar and nitrate in local "Yellow" cattle fed cassava root and cassava foliage supplemented or not with biochar and with urea or potassium nitrate as NPN source

http://www.lrrd.org/lrrd24/11/leng24199.htm for full details

Leng et al 2012, Biochar reduces enteric methane and improves growth and feed conversion in local "Yellow" cattle fed cassava root chips and fresh cassava foliage BC – Biochar KN – form of potassium nitrate

DELINAT Institut für Ökologie und Klimafarming

Black Burger Methane Reduction

3. Litter Amendment Cascading use of biochar

reducing humidity and odors, fixation of nutrients, reducing NH3 and CH4 emissions, ameliorates hygiene, hoof infections

Hof Holderstock – Wilhelmine & Bruno Koller

3.

Biochar induced ammonia reduction in chicken farm

] Neuer Tab 🛛 🛛 📩 🕅 D	elinat - Institut für Ökologie und K	li × +		EBC – b	parn proto	col
nat-institut.org/delinat/fe/pub/de/stallprotokoll?tria	al_id=2&din=feedstuff			☆ ▼ (3 C 🛛 🛛 Google	م
🛿 (Unbenannt) 🥹 Erste Schritte 🔂 Google Reade	er (853) 🔊 Nichtidentisches I	hausbau 🔊 Ithaka-Journal für	Terr 💽 Pessl Instruments - F	Fie		Lese
Home Stallprotokoll auswählen	Stallprotokoll: 2 - N	1ilchkühe / 20.01.2013	3 22:53			
Stallprotokoll anlegen	Stallprotokoll	Pflanzenkohle	Silage	Futtermittel	Einstreu	
Betrieb auswählen neuen Betrieb anlegen	Gülle	Güllekonsistenz	Datenaufnahme	Beobachtungen	Tiergesundheit	
	[400] Bitte geben Sie 60% Wiesenheu 30% Zuckerrüben 10% Maissilage	die gewöhnlich verwer schnitzel	ndete Futterzusammer O Anş O Anş	nsetzung in Prozent ar gaben in % Trockensu gaben in % Feuchtma gaben in % Vol	n: bstanz sse	
	[405] Welche Futterz Algenextrakt, Vitamin Gesteinsmehl	usätze verwenden Sie ne, Mineralstoffe etc.)?	(z.B. Steinmehle, Aktiv -	+, Probiotika, Laktulos	se, Enterokokken,	
	[410] In welcher Forr CarbonFutter [415] Welche Menge 123 g pro kg	n geben Sie die Pflanze Pflanzenkohle erhalter Lebendgewicht	enkohle zur Fütterung? • n die Tiere pro Tag [in g	pro kg Lebendgewich	t]?	

EBC – barn protocol

Biochar for bedding:

84% less odors

ithaka institute

First results from 30 farms

Biochar for bedding:

84% less odors

Biochar as feed additive:

77% less dysenterie

62% animals are calmer and balanced

77% less odor in barns

Observation: cells in milk decreased, less streptococcus, less rumen ulcer, better fitness

Biochar for bedding:

84% less odors

Biochar as feed additive:

77% less dysenteries

62% animals are calmer and balanced

77% less odor in barns

Observation: cells in milk decreased, less streptococcus, less rumen ulcer, better fitness

Biochar as liquid manure additive

79% less odors63% less cauterization of the liquid manure

ithaka institute

More examples from livestock farms with CarbonFeed

Poultry farms

3 days after beginn of treatment with fermented biochar, vermifugation of round worms took place

Cow farm

one year after beginning administration, cows did not need any veterinary treatment during the first year of administration

Swine farms

pigs did not need any more antibiotic treatment during the first six months of administration

Chicks

the mortality rate decreased in a chicken farm, while at the same time a high and continual increase in weight of 90 - 100g per day was observed

5. Composting the manure

Cascading use of biochar

5.

Composting the carbon manure + the separated solids of the liquid manure

10 – 20% biochar

"Swiss Terra Preta"

reduction of GHG during composting

<u>Chen et al. 2010, Chemosphere 78</u>: **up to 65% reduced N loss** (total Kjeldahl N) with up to 9% bamboo biochar addition (pig manure + sawdust +/- BC (pH 8.8)

Figure 2. Changes in N2O emission rate during pig manure composting.

Wang et al. 2012: dx.doi.org/10.1021/es305293h | Environ. Sci. Technol.

Swiss Terra Preta

greenhouse substrates, urban farming, pot substrates, special cultures, tree nurcery

Corresponding to 1000 t biochar / ha
Biochar-Compost Substrates

100% BC

0% BC

70% BC

15% BC

45% BC

30% BC

Biobeds for streetwater decontamination

HEPIA Genève & **ithaka** institute

Blanc, Boivin, Schmidt (2013)

Planting trees with terra preta

Highly concentrated hotspots close to the roots

Planting trees with terra preta

Highly concentrated hotspots close to the roots

© Makoto Ogawa

under the roots: biochar substrates

7. Soil Amendment

Cascading use of biochar

7.

Soil amendment Fixation of nutrients Increase of SOM

8. Increase of humus (SOC)

Cascading use of biochar

Data from a vineyard field trial in Valais

DELINAT Institut für Ökologie und Klimafarming

8. Increase of humus (SOC)

Cascading use of biochar

Data from a vineyard field trial in Valais

DELINAT Institut für Ökologie und Klimafarming

8. Increase of humus (SOC)

Cascading use of biochar

Data from a vineyard field trial in Valais

DELINAT Institut für Ökologie und Klimafarming

9. Carbon sequestration

Cascading use of biochar

9.

Carbon sequestration: SOM, BC Reducing NH₃, CH₄, N₂0

CO2-certificates?

Ecosystem Service Certificate

A Biochar Cascade

Adding complexity to multiply yields

Albert Bates Global Village Institute for Appropriate Technology

Creative Commons Attribution-NonCommercial-NoDerivs-Share Alike 3.0 License Water Treatment Silage Conditioner Digestive Supplement

Litter Amendment

Manure Conditioner

Soil Amendment

Carbon Sequestration

farming

Soil amendment

7. Carbon fertiliser, 8. Compost, 9. Substitute for peat in potting soil, 10. Plant protection, 11. Compensatory fertiliser for trace elements

Livestock farming

1. Silage agent, 2. Feed additive / supplement, 3. Litter additive, 4. Slurry treatment, 5. Manure composting, 6. Water treatment in fish farming

ithaka institute

Biogas produktion

21. Biomass additive, 22. Biogas slurry treatment

farming

Soil amendment

7. Carbon fertiliser, 8. Compost, 9. Substitute for peat in potting soil, 10. Plant protection, 11. Compensatory fertiliser for trace elements

Livestock farming

1. Silage agent, 2. Feed additive / supplement, 3. Litter additive, 4. Slurry treatment, 5. Manure composting, 6. Water treatment in fish farming

Biogas produktion

21. Biomass additive, 22. Biogas slurry treatment

decontamination

Decontamination of soil and natural water

17. Soil additive for soil remediation, 18. highly adsorbing, plantable soil substrates 19. A barrier preventing pesticides getting into surface water 20. Treating pond and lake water

2.6 Waste water and sewage treatment

23. Active carbon filter, 24. Pre-rinsing additive, 25. Soil substrate for organic plant beds, 26. Composting toilets

2.7 Treatment of drinking water

27. Micro-filters, 28. Macro-filters in developing countries

2.8 Exhaust filter

20 Controlling omissions 20 Poom air filtors

industry

Building material

12. Insulation, 13. Air decontamination, 14. Decontamination of earth foundations, 15. Humidity regulation, 16. Protection against electromagnetic radiation ("electrosmog")

Textile industry

45. Fabric additive for functional underwear, 46. Thermal insulation for functional clothing, 47. Deodorant for shoe soles

Food industry

48. Conservation of food 49. Digesting helper

industry

Building material

12. Insulation, 13. Air decontamination, 14. Decontamination of earth foundations, 15. Humidity regulation, 16. Protection against electromagnetic radiation ("electrosmog")

Textile industry

45. Fabric additive for functional underwear, 46. Thermal insulation for functional clothing, 47. Deodorant for shoe soles

Food industry 48. Conservation of food 49. Digesting helper

Wellness

48. Filling for mattresses, 49. filling for pillows

Radio protection

50. Shield against electromagnetic radiation (microwaves, TV, Netzgeräte, computer)

Further uses

Industrial materials (31. carbon fibres, 32. plastics) Electronics (33. semiconductors, 34. batteries) Metallurgy (35. metal reduction) Cosmetics (36. soaps, 37. skin-cream, 38. therapeutic bath additives) Paints and colouring (39. food colorants, 40. industrial paints) Energy production (41. pellets, 42. substitute for lignite) Medicines (43. detoxification, 44. carrier for active pharmaceutical ingredients)

Biochar in Textile Industry

45. Fabric additive for functional underwear, 46. Thermal insulation for functional clothing, 47. Deodorant for shoe soles

30% bambou-char

Conservation of Food

Regulation of humidity, anti-bacteriologic, adsorption of ethylen

<u>C</u>osmetics

36. soaps, 37. skin-cream, 38. therapeutic bath additives)

Biochar Food

Graphen

Stephen Joseph, C. Kammann

University NSW & University Giessen& **ithaka** institute

Forest Waste for Supercapacitors

https://www.pddnet.com/news/2013/10/fore st-waste-cheaper-greenersupercapacitors#!

Biochar-Clay-Plaster for optimal indoor climate

humidity control, thermal insulation, toxin fixation, electro-magnetic shielding

50% Biochar

Biochar for habitats

Effects of Biochar-Plaster

- Regulation / buffering of humidity Insulation
- Noise protection
- Toxin binding (solvents, VOC)
- Blocking of high frequency radiation
- Low electrostatic charging of air
- Conservation of wood
- Reduction of dust (mites!)

Effects of Biochar-Plaster

- Deodorising
- aesthetic
- Anti-bacteriological, fungicide (repellent)
- Air cleaning
- Increase of redox potential
- Emission of far-infrared radiation

Ithaka Institute's conferencing room

Painted with with Claycolour

Ithaka Institute's Office

biochar bricks

cement limes clay

biochar bricks can swimm

water-uptake of biochar bricks

Zementsteine

Fridge House in Kenya

Biochar Housing as Carbon Sink

1 t biochar in the wall is some 2.5 t CO2 less in the atmosphere

Biochar Housing as Carbon Sink

Biochar Pillows

Where do we get the Carbon from?

Establish the Carbon Exchange Market

www.ithaka-journal.net

www.european-biochar.org

© European Biochar Foundation (EBC)

European Biochar Certificate

for biochar production

Version 4.3 of 10th September 2012

Schmidt HP,(Delinat Institute), Abiven S (University Zurich), Kammann C (University Giessen), Glaser B (University Halle), Bucheli T (ART Reckenholz), Haren Rv (Kiemkracht), Starmann I (InKnowCom), Leifeld J (ART Reckenholz)

Pillars of the EBC-Certificate

www.european-biochar.org

- 1. Sustainable provision and production of biomass **feedstock (positive list)**
- 2. Energy efficient, low emission **pyrolysis** technique
- **3.** Biochar characterization key parameters
- 4. Biochar quality low contaminant level
- 5. Low hazard use and application of biochar

D	Measure	Analysis value	basic. emium	nnexe *	lethod	Remarks, thresholds		
				Ā	2			
Biomass used								
301	Only biomasses listed in the positive list were used?							
302	All non-organic waste was removed							
303	The biomasses were not contaminated by paint, solvents or other synthetic materials.							
304	When using primary agricultural products, it is guaranteed that these were grown in a sustainable manner.							
305	No forestry products were used from forests not managed in a sustainable manner							
306	Biomasses used were not transported to the pyrolysis plant over distances greater than 80 km					exemption		
Biochar properties - test results per batch								
501	Biochar carbon content in %			x		Threshold: 50%		
502	Black carbon content in % of the overall carbon content					Guideline: 10 - 40% (not mandatory)		
503	H/Corg ratio of the biochar					Threshold: 0.7		
504	O/Corg ratio of the biochar					Guideline: 0.4		
505	An analysis of the nutrients contained in the biochar is available and attached to the delivery documents?			*				
506.01	Lead concentration in g/t					basic: 150 g/ t premium: 120 g/t		
506.02	Cadmium concentration in g/t					basic: 1.5 g/t premium: 1 g/t		
506.03	Copper concentration in g/t					Threshold: 100 g/t		
506.04	Nickel concentration in g/t					basic: 50 g/t premium: 30 g/t (exemption)		
506.05	Mercury concentration in g/t					Threshold: 1 g/t		
506.06	Zinc concentration in g/t					basic: 400 g/t premium: 300 g/t		
506.07	Chromium concentration in g/t					basic: 90 g/t premium: 80 g/t		
507,01	pH value					t	itute	

Technical Definition of Biochar

	EBC	IBI
C-content	> 50 %	> 60% / > 40 / > 10
H/Corg	< 0.7	< 0.7
Contaminents (HM)	Pb, Ni, Cr, Hg, Zn, Cu, Cd	Pb, Ni, Cr, Hg, Zn, Cu, Cd
Org. Contaminents	PAH, PCB, Dioxines, Furanes	PAH, PCB, Dioxines, Furanes
nutrients	declaration	declaration
BC, VOC, pH, BET, WHC	declaration	declaration
feedstock	positive liste	any
production	positive energy balance	any

Just an example: PAH threshold

5.8 The biochar's PAH content (sum of the EPA's 16 priority pollutants) must be under 12 mg/kg DM for *basic* grade and under 4 mg/kg DM for *premium* grade biochar.

Total and bioavailable PAHs

Biochar: Contaminant source or sink? Isabel Hilber | © Agroscope Reckenholz-Tänikon Research Station ART

PAH uptake by plant roots

30% biochar in compost

PAH in biochar 9100 mg / t

stitute

equivalent to 900 t biochar / ha

Hilber, I, Schroeder M, Kammann C, Bucheli T, Schmidt HP – University Giessen, ART CH, Delinat-Institut

PAH uptake by plant roots

30% biochar in compost

PAH in biochar 9100 mg / t

stiti

equivalent to 900 t biochar / ha

Hilber, I, Schroeder M, Kammann C, Bucheli T, Schmidt HP – University Giessen, ART CH, Delinat-Institut

How to take samples ?

Hilber, I, Bucheli T, Schmidt HP – Agroscope Schweiz, Delinat-Institut

PAH values in real and mixed samples

Sample precision: 0.041

Pillars of the EBC-Certificate

Independent on-site control (governmental accredited: q.inspecta) Independent sampling Unified analytical methods (accredited labs)

EUROFINS Umwelt Ost GmbH

Ndl. Freiberg

Prüfverfahren: Bestimmung:

der Schüttdichte

Probenvorbereitung - Probenteilung fester Brennstoffe

des Wassergehaltes und der Analysenfeuchtigkeit (thermisches Verfahren)

des Aschegehaltes

des Brennwertes und Berechnung des Heizwertes Verfahren mit adiabatischem Mantel

des Gesamtgehaltes an Kohlenstoff, Wasserstoff und Stickstoff instrumentelle Methoden

des Schwefelgehaltes (Gesamtschwefel) instrumentelle Methoden

der Elementarzusammensetzung und Berechnung des Sauerstoffgehaltes

des Gehaltes an Carbonat-Kohlenstoffdioxid

der polyzyklischen aromatischen Kohlenwasserstoffe (PAK) mittels GC/MS

von Polychlorierten Dibenzodioxinen (PCDD) und Dibenzofuranen (PCDF) und von polychlorierten Biphenylen (PCB) (FF)

des pH-Wertes

der spezifischen elektrischen Leitfähigkeit

Salzgehalt - Leitfähigkeit des wässrigen Auszugs (N)

Probenahme und Probenvorbereitung an festen Brennstoffen zur Bestimmung der Gehalte an Spurenelementen

von 62 Elementen durch Anwendung induktiv gekoppelter Plasma-Massenspektrometrie (ICP-MS)

von Quecksilber (Hg)

der chemischen Zusammensetzung von Brennstoffaschen [und Schlacken]

von Ag, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Si, Sn, Sr, Ti, W, Zn, Zr DIN 51705

DIN 51701-3

DIN 51718; TGA 701 D4C

analog DIN 51719; TGA 701 D4C

DIN 51900, Teil 1 und Teil 3; Kalorimetersystem C 4000 A/ C 5000 DUO

DIN 51732; Analysenautomat Leco TRU SPEC CHN

DIN 51724 Tell 3; Analysenautomat SC-144 DR

DIN 51733

DIN 51726

DIN EN 15527

AIR DF 100, HRMS

analog DIN ISO 10390

DIN ISO 11265

nach VDLUFA-Methodenbuch Bd. I, A 10.1.1

DIN 22022-1

DIN EN ISO 17294-2 (E 29)

DIN EN 1483 (E 12) DIN 51729, Teil 1, Teil 11 (Aufschluss, Messung: ICP)

DIN EN ISO 11885 (E 22)

Methodes

ring trials

Pillars of the EBC-Certificate

Independent on-site control (governmental approved: q.inspecta) Independent sampling Unified analytical methods (authorized labs) Regular revision of standard by the scientific board of the EBC Legally backed-up **Economical viable** Close to practice, understandable

Voluntary industrial standard

Safeguarding Biochar quality

English Deutsch

European Biochar Foundation

Contact Newsletter EU-Cost Press

The European biochar foundation achieves its objective by

The European Biochar Foundation

search

home

EU Biochar Certificate Conferences & News Biochar Producers

Ithaka Journal

 Supporting and stimulating Biochar applied research and development in the domains of environment, agriculture, industrial applications, biochar production technologies and biochar feedstocks.

The European biochar foundation has the objective to promote sustainable biochar production and sustainable biochar application for environmental, agricultural and industrial use in Europe and the rest of the world.

- Promoting sustainable production and application of biochar by biochar knowledge dissemination by
 organising conferences, courses, masterclasses, summer schools workshops, and by the use of media
 (print and digital media) and any other means
- Advising authorities, enterprises, non-governmental organizations, educational institutes and biochar feedstock producers, biochar producers and biochar end-users
- Developing and implementing biochar certification schemes for sustainable biochar production and biochar application
- Developing best practice advices and directives for the use of biochar in agriculture, for climate mitigation and optimising nutrient cycles
- Controlling biochar certification schemes by auditing and certification and by authorizing organizations to certify biochar feedstock, biochar production and biochar application.
- 7. Participating in (inter)national cooperations, enterprises, foundations and other organizations
- 8. Taking and protecting Intellectual Property
- 9. And any other legal means

The European Biochar Foundation will be founded on 29th of August 2012.

European Biochar Foundation

- non for profit foundation
- Supported by
 - EU-INTERREG IVb NSR Biochar and
 - EU COST ACTION TD 1107

The Foundation has as its object:

Promoting sustainable biochar production and sustainable biochar applications for environmental, agricultural and industrial use in Europe and the rest of the world;

