
Implementation study of an open source E-Government-Application UAS Wilhelmshaven

1

Easy E-Government-Application

Implementation study of an open source
E-Government-Application

Case Study

 Investing in the future by working together for a sustainable and competitive region

Implementation study of an open source E-Government-Application UAS Wilhelmshaven

2

Implementation study of an open source E-Government-Application

1 Content
1 CONTENT .. 2

2 EXECUTIVE SUMMARY .. 3

3 PROBLEM STATEMENT .. 5

3.1 LEGAL REQUIREMENTS .. 5
3.2 REQUIREMENTS OFT THE DEVELOPERS .. 5
3.3 SPECIAL PROBLEMS .. 5

4 THE IMPLEMENTATION ... 6

4.1 THE CONTENT MANAGEMENT SYSTEM (CMS) DRUPAL .. 6
4.1.1 Drupal Module „egov“ ... 7
4.1.2 The rights concept of Drupal ... 8
4.1.3 The rights concept of the „egov“‐Module .. 8
4.1.4 The function‐ and hook‐implementation of the „egov“‐module ... 9

4.2 USE CASES .. 9
4.2.1 Design Forms ... 10
4.2.2 Use Forms .. 11
4.2.3 Restore user documents .. 13
4.2.4 Cronjobs ... 14
4.2.5 Administrative jobs .. 14

4.3 STRUCTURE OF THE DATA ... 15
4.3.1 The database structure of the „egov“‐module .. 15
4.3.2 Structure of the forms .. 16

4.3.2.1 Structure of the forms ... 16
4.3.2.2 The database table of forms .. 20
4.3.2.3 XML‐structure of the forms ... 20

4.3.3 Form data structure of an Easy Government‐Document ... 24
4.3.3.1 Structure of the form data ... 24
4.3.3.2 The database table of the form data ... 24
4.3.3.3 XML‐structure of the form data ... 25

Implementation study of an open source E-Government-Application UAS Wilhelmshaven

3

2 Executive Summary

Like many other universities, the University of Applied Sciences in Wilhelmshaven, is a public
institution and as such is subjected to the relevant legal norms. The following communication
scenarios between the students and the university occur regularly and must be supported:

 Legally binding disclosure of general information, e.g. on test conditions and course
conditions

 Legally binding disclosure of information concerning individual study situations, e.g.
performance certificates for exchange students

 Processing individual applications submitted by students, for example recognition of
exams from other universities

 Compliance with the legal requirements for data protection

Therefore we are building an e-government system called ”Easy Egov”. The system can be, as
primary task, publish legally binding forms and receive and archive the responses of these
filled forms.

A system for capturing legally binding forms is composed of several components and all
together will make the e-government application. These include as components:

 a complete form server with versioning,
 a document management system
 a complete user management sytem with an PKI-implementation (the Public Key Infrastrucre

will provide the legally authentification of users),
 a workflow system and
 a backup system

Therefore must be respected several laws, regulations and technical guidelines. In addition the
system must be sustainable. That means, for the full retention period of the documents (up to
30 years) the application must be run or it must be possible to transfer the functionality to
another system.

It is therefore a main task in the development to store the data in simple structures as XML
documents. All data will be encrypted to prevent the unauthorized scanning and reading. Only
in the back up can be stored the data unencrypted, in this case the administrator is responsible
for the security of the data.

The documents should be available in different transmission-media (HTML, PDF, XML forms)
and -methods (web, email). For the initial implementation a web-portal with HTML-forms is
developed. For this a module (an extension) for the CMS DRUPAL is written.
This has the advantage that some features of DRUAPL, such as the user management, can be
integrated. Also the theming (DRUPAL-wording for displaying of the data), the HTML code
including the CSS-design, will be done by the DRUPAL system.

Involved is Prof. Dr. C. Wunck and Dipl.-Winf. (FH) U. Bachmann at UAS Wilhelmshaven.

Date: 2011-04-27

Implementation study of an open source E-Government-Application UAS Wilhelmshaven

4

Implementation study of an open source E-Government-Application UAS Wilhelmshaven

5

3 Problem Statement
The application should store and manage forms and form-responses in a legal binding form.
Also an official notification, because of the read receipt, should be represented in a form, so
the system can also be used for official communications.

Since „easy E-Government“ deals with data for administrative acts, the system requirements
are special, and laid down in laws, administrative regulations and technical guidelines (see
Case Study “Feasibility Study of an Open Source E-Government-Application”).

3.1 Legal Requirements

The most important legal requirements are:

 Form data management with the possibility of unique user identification and authentication.
 Form and form data management with the ability to store data up 30 years and in a reasonable

time to restore. The period is limited by record retention periods for the qualified electronic
signatures.

 Form data management with the possibility data changes to demonstrate and to compare two
documents together.

 Forms management with the option to rebuild forms at any time with the submitted form data.
 Data security, particularly the unauthorized reading and scanning data needs to be prevented

on system side.
 Data reduction and data economy. This concept refers to the fact that only absolutely necessary

data collected and this data are only kept as long as needed (german federal data protection act
- BDSG §3).

3.2 Requirements oft the developers

Further requirements of the developers are:

 Implementation of the application in an open-source CMS (Content management system).
 To create a modular and expandable application.
 The application should be multilingual. As the default languages are English and German

provided.
 The opportunity the application to implement in any other system, not only CMS’s.
 The opportunity to use different transmission media (HTML, PDF, XML form) and method (web,

email) to.

3.3 Special Problems

Some of the points from the results in section 3.1 and 3.2 throwing particular problems.

So today can not foresee, we speak about a period up to 30 years, with which data formats will
be worked in future. We also cannot forecast with which data management systems will be
used in future.

Another problem is the today common timestamp formats as integer. The integer number will
run out soon and should not used for the application.

Implementation study of an open source E-Government-Application UAS Wilhelmshaven

6

Today's common qualified electronic signatures (at least in Germany) could be replaced by
other methods. In other European countries are different signature options used but should be
usable.

From this requirements and problems leads the following planned implementation.

4 The implementation

4.1 The Content Management System (CMS) Drupal

As CMS for the prototype will be used DRUPAL in the version 6.x (see http://www.drupal.org).
Drupal offers the advantage that it is a highly secure open-source CMS. A security team
handles all noticed vulnerabilities.

Drupal is a free and open source content management system (CMS) and Content
Management framework (CMF) written in PHP and distributed under the GNU General Public
License. Drupal runs on any computing platform that supports both a web server capable of
running PHP (including Apache, IIS, Lighttpd, and nginx) and a database (such as MySQL,
MariaDB, PostgreSQL, SQLite, or Microsoft SQL Server) to store content and settings. Drupal
has founded as open source project in 2001. It is now used for many hundreds of thousands of
Drupal sites of all kinds all over the world, for example for the reader's comments on the
website of the weekly newspaper "Die Zeit" or since 24 October 2009, the website of the White
House (http://www.whitehouse.gov) in Washington.

The Drupal core is the stock element of Drupal. It provides the basic functionality, and offer
modules that provide additional functions and the system can be added if needed. There are
currently (as of 30 January 2011) a total number of over 7,500 modules hosted on drupal.org,
5,000 of which are marked as compatible to Drupal 6 and over 1,000 for compatibility with
Drupal 7.x. These modules offer a wide range of simple, common website features, to complex
via graphical user configurable tools, to extensions to the already extensive programming
interfaces.

The modular design of Drupal allows a multi-purpose usage. The list ranges from "one-person
Web sites" such as personal weblogs to online communities with thousands of members.

For the most Drupal-Modules are language-libraries available. For new modules it is easy to
create a new language-library.
Also available for Drupal is a number of final modules are available that can be integrated into
the application, such as a LDAP module. A complete module list is available at
http://drupal.org/project/modules.

Another great advantage of Drupal is the easy way to create custom modules. These modules
are based on PHP 5.x and databases (e.g. MySQL 5.x) and can use the Drupal-HOOK-system
(Drupal-wording for interfaces) for the programming. A description of the Drupal-functions and
-interfaces is available under http://api.drupal.org/api/drupal/6.

Implementation study of an open source E-Government-Application UAS Wilhelmshaven

7

Drupal utilizes the MVC - Model-View-Controller - architectural pattern. The design pattern
divides a software system in three different areas.

 Model: data - that is organized by the system
 Controller: control component that receives requests, calls the business intelligence and

prepare the relevant data to display the View
 View: Components of a system responsible for displaying the data (theming).

This means, the custom module just takes care of the model- and controller-developing and
the design remains in the hand of the active Drupal-theme.

4.1.1 Drupal Module „egov“

For e-government application is a Drupal-module "egov" created. This module uses the hooks
in Drupal and implements the application with some separate interfaces. The application is
available as a PHP include files and can be completely transferred to other systems (e.g.
TYPO 3). Only the CMS-integration needs to be rewritten.

The “Easy E-Government-Application” can be connected only under a SSL connection. Other
connections will be intercepted and redirected to a SSL connection. In this way we ensure that
the connection will not be intercepted and read out.
The administrator of the application is responsible to provide a faultless SSL certificate.

The CMS has to extract some paths from the URL and route them to the “egov”-module. The
“egov”-module will check the connection (SSL), check if the requested function or form is
available, the user has the authorization for the request and finally execute the function or
form.

The user management is handled by CMS. The identity will be verified after the forms returned
by, in the form, specified in the procedure. Therefore the application will provide some
authentication-mechanism.

The module-package will be implemented, in the file system, as follows:

 Type Description
egov Directory Drupal-Module, contains the whole

application.
 egov.info Script Drupal-specific script to register the module in

Drupal.
 egov.install Script Drupal specific script to install the module.

Via this script will be create the database-
tables and –contents, create default-values
and system variables. Also can be done
updates for further versions via this script.

 egov.module Script Drupal specific script with the Hook-
implementation and customized functions.

 egov Directory Easy-E-Gouvernement-directory with all
scripts of the application.

 basic Directory
 class.eg_init.php Script The central entry script for the application. In

this script will be done all preliminary tests; as
secureness-, rights- or availably-tests.

 datasafe.inc Script An, per session, unique data-container. All

Implementation study of an open source E-Government-Application UAS Wilhelmshaven

8

scripts of the application can use it and
communicate via this script.

 … Script
 services Directory Container for all services and utility classes.
 Class_db.inc Script Database class with the implementation of all

functions from the database-interface.
 db_interface.inc Script Database-Interface.
 xmlHandler.inc Script The class will handle all XML-activities. It is

designed to use the SimpleXML-function from
the PHP Framework.
It is not necessary to get an instance from this
class. Normally it is sufficient to include the
class and call the functions as "Paamayim
Nekudotayim" (Scope Resolution Operator)
xmlHandler::getObjectFromString($xmlString)

 … Script
 form_handler Directory
 class_formDesigner Script Governs the design and handling to create

and edit forms, versioning, and rights
handling in the creating and processing of
forms.

 class_formHandler Script Controls the access to forms, the
preprocessing, delivery and receipt of
responses, validation, filling and signing the
forms.

 …
 … Directory
 backup Directory Directory to store backups and archives. The

data are not stored in plain text.

4.1.2 The rights concept of Drupal

Drupal uses a role concept to set the permissions. Each user will be at least assigned to one
role. A non-registered user automatically has the role "guest", a registered user the role
"authenticated user". The administrator can define any new roles and assign them to the user.
With the using of LDAP registration can be included the organization-roles in the Drupal
system.

4.1.3 The rights concept of the „egov“-Module

The "egov" module also uses the role-based permission concept of Drupal and will enlarge it
by a few points.

In either form it will be possible to define access roles for the rights “view”, “handle” and “edit”.
“view” means the form-filling access; which includes the call, fill out, returning and restoring
submitted forms. “handle” is the access to the submitted form-data, mostly for employees and
with the “edit”-access it is possible to edit the form.

Implementation study of an open source E-Government-Application UAS Wilhelmshaven

9

A user, regardless of his current role or the current distribution of rights in the form, always has
access to by himself submitted forms and can restore them.

In addition of the role access it will be possible to define IP-based positive and negative lists.
These lists will have always priority against the roles.
Positive lists will be defined in the forms and allow visibility restrictions on sub-networks, such
as the own company network (e.g. 139.13.*.*). User from outside the defined sub-net will be
refused.
The negative lists are managed in the administration area and allow for rejection of individual
IP addresses or subnets. In this way, an administrator can exclude robots, spiders and
hackers.

4.1.4 The function- and hook-implementation of the „egov“-module

The application requires very few functions and hooks (interfaces) in the Drupal module. The
most important implementation is the menu-hook. The menu-hook defines the required paths
and redirects the request to defined functions. It is possible to define wildcards for the paths
used.

function egov_menu()
{
 $items['egov/basis_administration'] = array(…
 $items['egov/basis_administration/global_settings'] = array(…
 $items['egov/basis_administration/backup_settings'] = array(…
 $items['egov/%'] = array(…
 $items['eg/%'] = array(…
 $items['eg'] = array(…

The path “../egov/ basis_administration/*” will be contain the administration area.
The path “../egov/*” leading in an especially protected administration area of the application.
The path “.. / eg / *” directs the user into the application. The final resolution of the path is in
the application; Class eg_init:: check_path (). This makes it possible forms with name, identifier
or an alias to call and extend the paths as desired;

‐ https://myApplication.de/eg/form1
‐ https://myApplication.de/eg/60c0b53095f81a7bf551b30c93fd20dd
‐ https://myApplication.de/eg/60c0b53095f81a7bf551b30c93fd20dd/submited
‐ https://myApplication.de/eg/60c0b53095f81a7bf551b30c93fd20dd/submited/page/2

The path length is limited to 250 characters by the application. This also provides an
implementation on a MS SharePoint server.

Further is a “perm”-hook (permission) is implemented. This implementation allows to defining
permissions for the application directly in Drupal.

4.2 Use Cases

The main functions of the application "Easy E-Government" are creating forms and filling out,
receiving of form data and their signing.

Implementation study of an open source E-Government-Application UAS Wilhelmshaven

10

These functions and some other features are illustrated in the following use cases
schematically and simplified.

4.2.1 Design Forms

Only individual or groups, authorized by the administration, have the rights to create forms.
The access will assure by the user management of the CMS and will be set on role
permissions.

Figure 1 - Create forms

An authorized user has the choice to edit a form or create new one. If a new form created must
be assigned a form-name as the first and the system creates a unique link under which the
form is reached. It is also possible to generate URL aliases, for example "speaking links " as
“../eg/myForm1”.

Implementation study of an open source E-Government-Application UAS Wilhelmshaven

11

With the first step, the form is created in principle, but until the conclusion of the form creation
the form is inactivated, i.e. only the owner has access.

Next, restrictions on access are set to the form. The access rights may relate to persons, roles
or/and IP- /subnet-addresses.

Then any form of components and workflows can be added.

At the end, the form can be signed. So the user has the assurance that their data get only to
authorize persons.

Before the activation of a form a version number will be generated. A version number must be
created always new if a form is created or at least a request for this form received.

4.2.2 Use Forms

Access to a form can be divided into two areas - before filling out a form and after filling.

In the forefront of the form delivery, the application will made all security queries – is it a SSL-
Connection, exists the form, is the user authorized for the requested access, is the form
activated and published and so on.

If errors are found, the user is informed by a message about it.

Implementation study of an open source E-Government-Application UAS Wilhelmshaven

12

Figure 2 - Filling forms, pre form filling

In front of every transmission the form will be added with a “transmitted_id”. If the form is sent
back the “transmitted_id” must exists in the system. Otherwise the form is not accepted. This
prevents a multiple submitting of forms (e. g. F5 key or downloaded PDF).

Implementation study of an open source E-Government-Application UAS Wilhelmshaven

13

Figure 3 - Filling formes, post form filling

Comes a filled form back to the system, the application will check whether the form is still there
and the form to the input date is still active.

Thereafter, the form contents are validated. There are standard validation functions, such as
only numerical values, email validation, check for empty content, etc. But it can also validate
additional functions in the form components are deposited.

Is the form successfully validated, the system generate the signature applet and the user can
sign the form. The signature is checked and, if correct, generates the application a document
hash and sent it to the user. Also the document will be activated. With the document hash, the
user has the sureness that the form has been accepted and processed.

4.2.3 Restore user documents

Each user has the ability to view their documents again. Therefore a user is checked by user-
ID. Then he can see a list of documents or call a document on the document ID.

Implementation study of an open source E-Government-Application UAS Wilhelmshaven

14

Before the delivery of a document the permissions will be checked. Subsequent processing of
a document is usually not provided.

4.2.4 Cronjobs

For the smooth handling of the application are cron jobs necessary.

During the cron job will be done workflows, backups and the cleaning of the database.

4.2.5 Administrative jobs

The administrator has to perform a series of initial and routine tasks and thereby provide the
functionality of the system.

Implementation study of an open source E-Government-Application UAS Wilhelmshaven

15

4.3 Structure of the data

To ensure the compatibility of the data for other systems and the future all important data will
stored in a XML structure.

These structures can be stored easily and transmitted in any data system. In addition, the data
will be encrypted in the XML tags, so that a search in the database is not readily possible (a
requirement of the German law BDSG §4a). The disadvantage is the need to transfer the data
into an object structure for working in the application. There are, however, utility classes for
XML processing in all considered systems. The “egov”-module provides an interface for the
XML-handling with necessary functions. In the current version of the class “xmlHandler” the
functions are developed with the SimpleXML framework. You can also use any other
framework or your own classes.

To simplify and speed up the processing, the XML structures are stored in the database. Only
those data are unencrypted stored in the database to facilitate the processing and do not
contain personal or other data protection-relevant data.

4.3.1 The database structure of the „egov“-module

Implementation study of an open source E-Government-Application UAS Wilhelmshaven

16

Figure 4 - Database structure

4.3.2 Structure of the forms

It is possible to generate forms in various formats. For the initial implementation forms will be
in HTML formats prepared. But also other formats are possible, e. g. PDF, XML- or MS office
forms.

4.3.2.1 Structure of the forms

Forms are divided into two areas, general data and form fields. Basically, a form is constructed
as follows:

Area Needed Description

 Basis data always The basic data includes the general information of forms -

name, identifier, path, type, version, owner, permissions,
publication date and unpublished date. These data are
needed to simplify the discovery of the forms.
Another important specification is the expected signature

Implementation study of an open source E-Government-Application UAS Wilhelmshaven

17

method to confirm the form.
 Form data always The form data area is only a container fort he form pages.

In the form data area are no further attributes.
o Form page 1 - n The tag “pages” contains the attributes required to create

a form page, e. g. the action-path, special MINE-types or
CCS classes. Not all attributes are obligatory – see tables
”Form Component Type Definition 1”.
The tag “page” contains the form components of the form
page. To activate a form it is necessary to define at least
two form components (form content and submit button).
But you can define any number of components in any
number of pages.

 Form component 2 - n Form components are the atomic structures of forms,
such as text, text boxes, selection lists or radio button.
Each form component can have attributes, such as CSS
classes, validation instructions, default values, etc. – see
tables ”Form Component Type Definition 1”.

You can see the exactly implementation of the form components in the next tables.

a = attributes
r = required
o = optional
- = not available

Table 1 Legend for table 2 + 3

attributes

type button checkbox checkboxes date fieldset file
hidde
n page

accept - - - - - - - o

access - -

action - - - - - - - o

autocomplete_path - - - - - - - -

autocomplete_id - - - - - - - -

attached o o o o o o - o

class o o o o o o - o

collabsible - - - - o - - -

collapsed - - - - o - - -

cols - - - - - - - -
component_validatio
n - o o o o o o o

default_value o o o o o - o -

description o o o o o o - -

disabled o o o o - o - -

element_id o o o o o o o r

element_type r r r r r r r -

encrypt - - - - - - - o

javascript o o o o o o - o

Implementation study of an open source E-Government-Application UAS Wilhelmshaven

18

max_length - - - - - o - -

methode - - - - - - - r

multiple - - - - - - - -

name - - - - - - - o

options - - - - - - - -

order a a a a a a a a

field_prefix o o o o - o - o

required - o o o o o - -

resizable - - - - o - - -

size o

field_suffix o o o o - o - o

title o o o o o o - -

value o o o o o o o -

weight o o o o o o - -
Table 2 Form Component Type Definition 1

Implementation study of an open source E-Government-Application UAS Wilhelmshaven

19

attributes

type
passwor
d

passwor
d_
confirm radio radios submit select text textarea textfield

accept - - - - - - - - -

access

action - - - - - - - - -
autocompl
ete_path - - - - - - - - -
autocompl
ete_id - - - - - - - - -

attached o o o o o o o o o

class o o o o o o o o o
collabsibl
e - - - - - - - - -

collapsed - - - - - - - - -

cols - - - - - - - o -
componen
t_validatio
n o o o o - o - o o
default_va
lue - - o o o - - o o
descriptio
n o o o o o o - o o

disabled o o o o o o - o o
element_i
d o o o o o o o o o
element_t
ype r r r r r r r r r

encrypt - - - - - - - - -

javascript o o o o o o - o o
max_lengt
h o o - - - - - o o

methode - - - - - - - - -

multiple - - - - - x - - -

name - - - - - - - - -

options - - - r - r - - -

order a a a a a a a a a
field_prefi
x o o o o o o o o o

required o o o o - o - o o

resizable - - - - - - - o -

size o o o o o
field_suffi
x o o o o o o o o o

title o o o o o o o o o

value o o o o o o r o o

weight o o o o o o o o o
Table 3 Form Component Type Definition 2

Implementation study of an open source E-Government-Application UAS Wilhelmshaven

20

With the autocomplete function it is possible to get individual data from customized defined
functions or WSDL interfaces. The function can used to build option lists or radio buttons.

4.3.2.2 The database table of forms

For the forms results a database table structure for the table “egov_form”, as follow:

 name – Is the name of the form.
 identifier – The internal id of the data set. It is a MD5-string build from the form name and the

version number.
 path – The path to call the form.
 version – The version number of the form. On every changing of an activated form, which is

used onetime, it is obligatory to build a new version number. This is necessary because the
application should always to be able to rebuild a form like at the time of submission the form
was build.

 owner – The user id of the owner of the form.
 active – Says if a form is callable. For blocked forms it is not possible to receive new data.
 publish_date – Is the publishing date of the form. Before this date a form should not transmitted.
 unpublish_date – Is the unpublishing date of the form. After this date a form should not

transmitted. With saved form data it is possible to rebuild the form at any time.
 data – Contains the XML-structure of the form.

4.3.2.3 XML-structure of the forms

Implementation study of an open source E-Government-Application UAS Wilhelmshaven

21

Implementation study of an open source E-Government-Application UAS Wilhelmshaven

22

Figure 5 - Structure of an Easy Government-Form 1

Figure 6 - Structure of an Easy Government--Form 2

<?xml version="1.0" encoding="UTF-8"?>
<egov_form xsi:noNamespaceSchemaLocation="egov_form.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <basis_data>
 <name>text name</name>
 <path>text</path>
 <creation_date>text</creation_date>
 <version>text</version>
 <owner>text</owner>
 <active>text</active>
 <signature keyinfo="0" signatureValue="0" signedInfo="0">
 <signedInfo>text</signedInfo>
 <signatureValue>text</signatureValue>
 <keyinfo>text</keyinfo>
 </signature>

<access>
 <ip_access/>
 <view>
 <role id="10">student wilhelmshaven</role>
 <role id="11">student oldenburg</role>
 <role id="12">student elsfleht</role>
 </view>
 <handle>
 <role id="6">employee wilhelmshaven</role>
 <role id="7">employee oldenburg</role>
 <role id="8">employee elsfleth</role>
 </handle>
 <edit>
 <role id="5">form admin</role>
 </edit>
 </access>
 <publish_date>
 <date_time>
 <date>text</date>
 <time>text</time>
 </date_time>
 </publish_date>
 <unpublish_date>
 <date_time>
 <date>text</date>
 <time>text</time>
 </date_time>
 </unpublish_date>
 </basis_data>

Implementation study of an open source E-Government-Application UAS Wilhelmshaven

23

 <pages>
 <page order="1">
 <page_number>1</page_number>
 <form_component order="1" type="text">
 <element_type>text</element_type>
 <field_prefix> text </field_prefix>
 <field_suffix> text </field_suffix>
 <parents>text</parents>
 <title>text</title>
 <weight>0</weight>
 <value> text</value>
 </form_component>
 <form_component order="1" type="textfield">
 <class> text</class>
 <description> </description>
 <default_value> </default_value>
 <disabled>false</disabled>
 <element_type>textfield</element_type>
 <element_id>textfield_name</element_id>
 <field_prefix>Das ist der Prefix</field_prefix>
 <field_suffix>Das ist der Suffix</field_suffix>
 <max_length>200</max_length>
 <required>true</required>
 <size>60</size>
 <title>Textfield 1</title>
 <weight>0</weight>
 <value></value>
 </form_component>
 <form_component order="10" type="button">
 <disabled>false</disabled>
 <element_type>button</element_type>
 <field_prefix></field_prefix>
 <field_suffix></field_suffix>
 <name>submit_button</name>
 <parents>text</parents>
 <title>text</title>
 <weight>0</weight>
 <value>Senden</value>
 <uri>seite=2</uri>
 </form_component>
 </page>
 <page order="2">
 <page_number>2</page_number>
 <form_component order="1" type="text">
 <element_type>text</element_type>
 <default_value>Das ist ein Default-Text</default_value>
 <disabled>false</disabled>
 <value>Das ist ein VALUE-Wert</value>
 <theme>text</theme>
 <title>none</title>
 <weight>1</weight>
 </form_component>
 <form_component order="10" type="button">
 <disabled>false</disabled>
 <element_type>button</element_type>
 <field_prefix></field_prefix>
 <field_suffix></field_suffix>
 <name>submit_button</name>
 <parents>text</parents>
 <title>text</title>
 <weight>0</weight>
 <value>Senden</value>
 <uri>seite=3</uri>
 </form_component>
 </page>
 </pages>
</egov_form>

Implementation study of an open source E-Government-Application UAS Wilhelmshaven

24

4.3.3 Form data structure of an Easy Government-Document

The form data structure follows the same structure as the structures of forms. The database
only stores unencrypted data which are not data protection relevant.

For each incoming document will be a unique document ID (MD5 hash) generated. Each
document will also receive a document hash, generated from the pure form data, the form
name and a time stamp. This hash will append to the document and stored in the database,
sent to the sender and receiver. This hash will detect all changes in the form data without
questions. So it is possible to compare different documents and to prove the original
document.

Another special feature is the "Part-Of"-function. This can link documents as required. The
“Part-Of” is a document ID that refers to parent document. Such chains can be used to define
circular letters or workflows. If the "Part-Of" function is used, the user automatically has a view
permission on the parent document.

Also, files can be accepted.

4.3.3.1 Structure of the form data

Like the forms (4.3.2.1) divided the structure of the form data into two areas; some general
data which required to finding the data set in the database quickly and the “dataset” as
container for the received data and the electronical signature. The general data are stored
unencrypted and so it is important to store only data’s which are not data protection relevant.

The transmitted data in the “dataset” container are generally encrypted to prevent a search in
the contents of the database. Only after loading the data from the database, the data are
decrypted in the application.
A special case is the ability to upload files. This data are instantly base64-encoded and
subsequent encrypted, otherwise exists the danger of executable scripts.

The signature part is for the, in Germany used, eID-function and –data optimized. It is also
possible to handle all other signature methods, in the simplest case an LDAP authentication (in
Germany is not legally binding).

4.3.3.2 The database table of the form data

The database table is, as in the forms, kept simple and does not include any data protection
relevant data.

 document_id – Is the unique name of the document. With the document ID is it possible to call
the document at any time, if the requester is entitled.

 part_of_document_id – Is the document ID of the parent document (optional). For example, if an
offer is made, can an attention or approval done in a second form which refers to the first.

 owner - The user id of the sender of the form.
 document_hash – Is a MD5-hash generated from the pure form data, the form name and a time

stamp.
Example: md5(‘<egov_document><form>abc</form>< request_time>2011-03-03
12:12:15</request_time><dataset><data page="1"><component>1</component><value>Fritz

Implementation study of an open source E-Government-Application UAS Wilhelmshaven

25

Schneider</value></data><data page="1"> <component>2</component>
<value>genehmigt</value> </data><data><component/><value/></data></dataset></
egov_document >‘) results “cacd8907435be3b74628e64d1dfc2029”.

If only one letter or character changes, such as the time set to 12:12:16, the result is another
hash “8ca6e65545843a9c047078f2d29730bc”. So it is possible to compare different documents
and to prove the original document.

 document – Containing the submitted form data in a XML-structure and encrypted mode. By
encrypting is technically a search of the database more difficult (a requirement of the German
law BDSG §4a, §9, §14 ff).

 document_type - Specifies the document type (HTML, PDF, etc.).
 active - Specifies whether the form data are valid. For example, a person entitled can declare a

data set to be invalid, because the form data are incomplete or inaccurate. Also the form data
are generally not active until they are signing.

 created – The receiving date of the form data. The date will be get from a special time server
and is legally binding.

The signature will be stored as own data set in the ”egov_document”. So it is also more difficult
to search or read the signature data. The siganture is not involved in the hash generation,
because the option should be available that a entitled person can sign the data set. This
feature allows people, who didn’t have a qualified signature or didn’t have the technical
equipment, bring data into the system. Only special persons or groups are entitled to signing of
minutes.

In the application is a special class for the system-side encrypting and decrypting. As
encryption methodes will be provide ”none” (not allowed in Germany), base64 (only for testing)
and a GnuPG implementation. On an interface can be added any other encryption algorithms.
The encryption method and key must be specified individually during installation.

4.3.3.3 XML-structure of the form data

In the figure "Structure of an Easy-Government Document" is the structure of the XML file to
identify.

Implementation study of an open source E-Government-Application UAS Wilhelmshaven

26

Figure 7 - Structure of an Easy Government--Document

<?xml version="1.0" encoding="UTF-8"?>
<egov_document xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="egov_document.xsd">
 <applikation/>
 <document_id/>
 <document_type/>
 <document_hash/>

Implementation study of an open source E-Government-Application UAS Wilhelmshaven

27

 <docname_name/>
 <request_time/>
 <remote_addr/>
 <dataset>
 <data page="1">
 <component>
 1
 </component>
 <value>
 Fritz Schneider
 </value>
 </data>
 <data page="1">
 <component>
 2
 </component>
 <value>
 genehmigt
 </value>
 </data>
 <data>
 <component/>
 <value/>
 </data>
 <files>
 <file>
 <name/>
 <extension/>
 <file_data/>
 </file>
 <file>
 <name/>
 <extension/>
 <file_data/>
 </file>
 </files>
</dataset>
 <Signature Id="">
 <SignedInfo>
 <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2000/WD-xml-c14n-20000710">
 </CanonicalizationMethod>
 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa">
 </SignatureMethod>
 <Reference URI="http://www.w3.org/TR/xml-stylesheet/">
 <Transforms>
 <Transform Algorithm="http://www.w3.org/2000/09/xmldsig#base64"/>
 <Transform/>
 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <DigestValue/>
 </Reference>
 <Reference URI="http://www.w3.org/TR/REC-xml-names/">
 <Transforms>
 <Transform Algorithm="http://www.w3.org/2000/09/xmldsig#base64"/>
 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <DigestValue/>
 </Reference>
 </SignedInfo>
 <SignatureValue>
 </SignatureValue>
 <KeyInfo>
 <KeyValue>
 <DSAKeyValue>
 <P>...</P>
 <Q>...</Q>
 <G>...</G>
 <Y>...</Y>
 </DSAKeyValue>
 </KeyValue>

Implementation study of an open source E-Government-Application UAS Wilhelmshaven

28

 </KeyInfo>
 <Object>
 <SignatureProperties>
 <SignatureProperty Target="">
 <timestamp/>
 </SignatureProperty>
 </SignatureProperties>
 </Object>
 </Signature>
</egov_document>

