

Delay Penalty during SCTP Handover

Case Study Final Report

 Investing in the future by working together for a sustainable and competitive region

Abstract—The rapidly growing interest in untethered Internet
connections such as WLAN and 3G/4G mobile connections,
calls for intelligent session management, not least in terms of
handovers. As part of an effort to develop a SCTP-based session
management framework, we are studying ways of improving the
SCTP handover delay for real-time traffic by optimizing the
startup delay on the handover-target path. We have developed
a theoretical model that predicts the transfer times of SCTP
messages during the startup on a new path. This paper validates
our model. It shows that the model can be used to predict message
transfer times in variable bitrate flows. The paper further
employs our model to study the startup delay penalty during
handover for the spectrum of network conditions considered
relevant for real-time traffic over mobile connections.

I. INTRODUCTION

In the past few years, we have seen a surge of interest
in untethered Internet connections, e.g., smartphones roaming
between wireless WLAN/3G/4G networks and wired corpo-
rate/home networks. A major issue when it comes to un-
tethered Internet connections is how to accomplish a smart
session management that provides for swift handovers. We are
currently working on a smart session management framework
for mobile Internet connections based on the Stream Control
Transmission Protocol (SCTP) [1]. As part of this work,
we are studying ways of improving the delay incurred by
slow start during the resumption of a session between the
mobile device and the target end point. To assist us in this
endeavor, we have developed a theoretical formula for the
transfer time of real-time SCTP messages during slow start [2].
This paper experimentally validates our formula. The paper
also predicts the startup delay penalty for the spectrum of
network conditions considered relevant for real-time traffic
over mobile connections. A key observation made is that a
video conferencing application, or other real-time applications
with similar requirements, could experience handover delay
penalties of more than 500 ms in a mobile, wireless setting.

Our theoretical formula is related to the huge body of exist-
ing work on the modeling of the TCP and SCTP congestion
control algorithms. Of note, is the seminal work of Padhye
et al. [3]. More closely related to our work are the SCTP
congestion control models in [4] and others. They considered
the performance of SCTP in handover scenarios, however,
contrary to us, they primarily considered average transfer times
for bulk-data transfers, and did not theoretically model real-
time traffic, and the transfer times of individual messages.

The remainder of this paper is organized as follows. Sec-
tion II presents our proposed SCTP-based framework for
providing smart session management to mobile Internet con-
nections, and as such provides a background to our work on
minimizing the handover startup delay. Section III presents
and validates our formula. Section IV demonstrates that our
formula could be used to predict the message transfer times
in a variable bitrate flow. Section V uses the formula to
explore the startup delay penalty during handover for network
conditions considered relevant for real-time traffic over mobile
connections. Finally, Section VI concludes the paper.

Movement

Detection

Module

SCTP-H

IPv4/IPv6

Dynamic Name

Resolution Server

Host

Mobility

Manager
Application

IfNIf1 If2 If3

Internet

Fig. 1. Architectural overview of our session management framework.

II. A SCTP-BASED SESSION MANAGEMENT FRAMEWORK

Our work on improving the startup delay during an SCTP
handover is part of an effort to build a session management
framework for mobile Internet connections [5]. Particularly,
the findings from our work will be implemented in a version
of SCTP, SCTP-H, which specifically targets mobile Internet
devices and their handover requirements. An architectural
overview of our framework is provided in Figure 1.

The Movement Detection Module is a process that runs
inside each mobile device. Its purpose is to continuously
monitor the status of each of the device’s network interfaces.
The Movement Detection Module maintains a state for each
interface. Events such as bringing an interface up or down,
or associating with a wireless access point trigger transitions
between the interface states.

Each application on a mobile device that utilizes the session
management framework incorporates a Mobility Manager.
Apart from keeping track of all network interfaces, the Move-
ment Detection Module is responsible for sending notifications
about interface state changes to the applications’ Mobility
Managers and to the Dynamic Name Resolution Server.

The Mobility Manager contains the intelligence that enables
an application to properly react to network interface events.
The notifications received from the Movement Detection Mod-
ule together with a set of policies determine the actions the
Mobility Manager should take.

Depending on its current location, a mobile device might
have zero, one, or several active network interfaces. Thus, it
is not feasible to use the IP addresses as a way of identify-
ing a mobile device. The Dynamic Name Resolution Server
translates the name given to a mobile device into its currently
used IP addresses.

III. DESCRIPTION AND VALIDATION OF OUR FORMULA

To design SCTP-H, we need to acquire an appreciation for
the delay penalty caused by slow start during startup on the
path between a mobile device and the corresponding endpoint.
To this end, we have developed a theoretical formula for the
transfer time of real-time SCTP messages during slow start [2].

This section explains and validates our formula. The formula
is based on some assumptions:
• The packet transmission time is negligible, which is

reasonable if the capacity of the link is high in relation
to the link delay.

• All messages are of the same size, which is typical for
CBR traffic.

• The network paths are symmetrical. In Formula 1 the
minimum message transfer time for a message is esti-
mated as half the round-trip time. This is, however, easily
generalized if the one-way delay is known.

• The SACK delay is disabled. The formula does not
account for different RTTs, which could be the case if
the SACK delay is enabled.

• There are no packet losses or retransmissions, since
modelling the transfer time for individual mesages in a
lossy network is not feasible.

• The message interarrival time is less than the retrans-
mission timeout (RTO), and consequently there are no
adjustments of the congestion window due to long idle
times.

• There are no messages queued at the time of the initializa-
tion of slow start. This is reasonable as SCTP provides a
soft handover mechanism and real-time streaming is only
feasible if the capacity of the path is sufficiently large to
carry the load.

In the following, the message transfer time for the nth
message during slow start is denoted MTTn. Obviously,
MTTn has to be at least half the round-trip time (RTT). In
addition, a message could experience a queuing delay, Dn,
when it arrives at SCTP at times when the congestion window
is full. Taken together, this gives us the formula in (1) for
MTTn.

MTTn =
RTT

2
+max(0, Dn) (1)

Figure 2, illustrates a transmission of the first 12 messages
during slow start and the delay experienced by message 7, D7.
The initial congestion window is assumed to be able to hold
four messages. It follows from Figure 2 that D7 depends on
three components:

1) the number of transmission rounds before the 7th mes-
sage is sent (p7);

2) the arrival time of the 7th message from the application
to SCTP (α7); and,

3) a delay offset that is related to the arrival rate of SACKs
at the Source (∆7).

Analytically, the dependence could be expressed as,
D7 = p7RTT − α7 + ∆7, which generalized to an arbitrary
message gives the formula in (2) 1.

Dn = pnRTT − αn + ∆n (2)

The formula in (2) was validated in a series of tests in
an Emulab [7] testbed. The network topology comprised two

1A full derivation of the formula is found in [6].

Source Destination
1

2

3

4

5

6

7

8

9

10

11

12

5,6
7,8

9,10
11,12

∆7=αΦ

wi

α7

7

p7=1

Fig. 2. Message transfers during slow start.

end systems connected to each other by a single network path
that passed through a dummynet [8] node. To cover a broad
spectrum of networks, ranging from local area to wide area
networks, tests were run for link delays: 5 ms, 25 ms, and
100 ms.

Both end systems were Intel 64-bit Xeon 3.0 GHz machines
running the Redhat Fedora Core 6 (2.6.20 kernel) operating
system. At both end systems, SCTP was run with its default
settings, e.g., the initial congestion window was 4380 Bytes.
We used a custom-built traffic generator to generate traffic
between the source and sink end systems. To make a straight-
forward validation possible, the tests were run with constant
bitrate (CBR) traffic. The traffic was selected to cover a large
number of traffic types. Particularly, it comprised messages of
sizes, 250 Bytes, 1452 Bytes2, and 4000 Bytes, and ran with
message interarrival times (λ) of 2 ms, 10 ms, and 50 ms.
Each test was repeated 50 times, and the mean MTTn during
slow start, over all repetitions was taken as a metric for the
measured MTTn, henceforth denoted MTTn.

To evaluate MTTn in a test against the results predicted
by our formula, MTT p

n , we computed the average relative
prediction error, ε̄r3. Table I presents part of the results of
our validation tests. Particularly, it presents the results of the
tests with s = 1452 Bytes, and in which slow start had an
actual effect on the MTTs. We observe that we have a good
compliance between the measured and the predicted MTTs.
The differences that still existed were primarily attributed to
variations in the link delays and variations in the interarrival

2The message size 1452 Bytes was selected since it fits exactly into one
Ethernet frame.

3The difference between the estimated value and the outcome of the
experiment in relation to the experimental value.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30 35

T
ra

n
s
fe

r
ti
m

e
 (

s
)

Message number

Slow-start theory
Slow-start experiment

Confidence interval = 95%

(a) The “Horizon Talk Show”.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50

T
ra

n
s
fe

r
ti
m

e
 (

s
)

Message number

Slow-start theory
Slow-start experiment

Confidence interval = 95%

(b) The “NBC 12 News”.

Fig. 3. Predicted and measured MTTs for VBR traffic (RTT = 200 ms).

TABLE I
PREDICTION ERROR IN THE TESTS WITH s = 1452 BYTES.

RTT (ms) λ (ms) ε̄r (%)
10 2 9.5
50 2 4.1
50 10 5.4

200 2 2.9
200 10 8.0

times of messages generated by our traffic generator.

IV. PREDICTING VBR TRAFFIC WITH CBR TRAFFIC

In previous work [2], we argued that the average intensity
of the traffic rather than its distribution determines the delay
penalty caused by slow start. Particularly, it was argued that
the delay penalty experienced by messages in a variable
bitrate (VBR) flow could be quite accurately predicted by
a CBR flow of messages whose size equaled the average
VBR message size. To verify this argument, we used the
same testbed as in the validation tests. We let our traf-
fic generator generate traffic in accordance with two video
trace files selected from the Arizona State University Video
Trace Library [9], [10]: the “NBC 12 News” (H.264 SVC,
average frame size = 32297 Bytes) and the “Horizon Talk
Show” (HQ H.264, average frame size = 6395 Bytes).
These trace files covered a bandwidth spectrum from roughly
1.7 Mbps up to approximately 8 Mbps, and thus represented
very different frame sizes and bitrates. As before, each test
was repeated 50 times.

Figures 3(a) and 3(b) show the results of the tests for the
“Horizon Talk Show” and the “NBC 12 News” video traces
with an RTT of 200 ms. As seen from the figures, our formula
quite accurately predicted the MTTs during slow start for
both types of VBR traffic. It is seen that the model performs
slightly worse in the delay peaks, and that the delay peaks
come at higher message numbers in the experimental results
compared to the calculated results. The main reason behind

this difference is that RFC 4960 permits the size of the SCTP
send window to exceed the congestion window by almost
one maximum transmission unit (MTU), something that is not
taken into account by our formula.

V. PREDICTING STARTUP DELAYS FOR REAL-TIME
TRAFFIC

On the basis of our formula, we have explored the startup
delay penalty due to slow start for the ranges of RTTs, mes-
sage sizes, and message interarrival times that are considered
relevant for mobile, wireless real-time traffic scenarios. We
have used our formula to predict the startup delay penalty for
RTTs in the interval: 5 ms to 300 ms; message sizes in the
interval: 100 Bytes to 60 000 Bytes; and message interarrival
times in the interval of 1 ms to 50 ms. The initial congestion
window was at all times set to 4380 Bytes [1].

We used the maximum delay penalty experienced by any
message during slow start as a metric for the startup delay
penalty. The metric, henceforth denoted Θmax, was computed
as given by (3), where Ω denotes the set of all messages sent
during slow start.

Θmax = max
n∈Ω
{MTT p

n −RTT/2} (3)

Obviously, this metric does not convey the complete picture of
the startup delay penalty during slow start. However, study-
ing the message transfer times of single messages becomes
unwieldy and hard to analyze. Also, by the way slow start
works, the maximum delay penalty imposed by slow start is
more or less proportional to the number of messages affected
by slow start. Thus, typically a large Θmax means that a large
number of messages was affected by slow start.

Figure 4(a) illustrates how the startup delay penalty varies
with the message interarrival time and the RTT for message
sizes ranging between 100 Bytes and 60 KBytes. The graphs
show clearly how the delay penalty increases with smaller
interarrival times and longer RTTs. At short RTTs, especially
in combination with small message sizes, slow start has more
or less no impact at all on the MTT. However, it starts to

 0
 5

 10
 15

 20
 25

 30
 35

 40
 0

 50

 100

 150

 200

 250

 300

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

Θ
max

 (ms)

s = 100 Bytes
s = 1 KBytes
s = 10 KBytes
s = 60 KBytes

λ (ms)

RTT (ms)

Θ
max

 (ms)

(a) Θmax as a function of λ and RTT.

 0
 50

 100
 150

 200
 250

 300
 0

 10000

 20000

 30000

 40000

 50000

 60000

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

Θ
max

 (ms)

λ = 1 ms
λ = 5 ms
λ = 10 ms
λ = 20 ms
λ = 40 ms

RTT (ms)

s (Bytes)

Θ
max

 (ms)

(b) Θmax as a function of RTT and s.

Fig. 4. Prediction of the startup delay penalty during slow start.

impede on MTT at message sizes above 1000 Bytes; and,
e.g., with a message size of 10 kBytes, an RTT of 115 ms,
and a message interarrival time of 33 ms, i.e., a traffic sce-
nario that roughly corresponds with a mobile, wireless video
conferencing scenario, we have a Θmax of almost 500 ms.

Figure 4(b) shows how the startup delay penalty varies with
the RTT and the message size for message interarrival times in
the interval of 1 ms to 40 ms. From a video traffic perspective,
it is particularly interesting to observe the impact of slow start
for interarrival times in between 20 ms and 40 ms, a range that
covers popular video encoding formats such as MPEG-4 and
H.264. We observe that for RTTs below 100 ms, and message
sizes less than a couple of kilobytes, slow start has little effect
on the message transfer times. However, with message sizes
in the order of 10 KBytes and RTTs approaching 200 ms, the
impact becomes quite significant. In fact, the figure predicts
that some messages in a video flow (e.g., frames of size
30 KBytes that are transmitted at a frame rate of 30 frames/s)
over a 3G wireless link with an RTT of 200 ms [11] experience
delay penalties in the vicinity of 1 s.

VI. CONCLUSION

We are currently underway of implementing a smart session
management framework for mobile Internet connections based
on the SCTP transport protocol. As part of our work, we
are studying ways of improving the SCTP handover delay,
particularly how to optimize the startup delay on the target
path. To determine the theoretically feasible gains of modi-
fying the SCTP startup behavior on the new path, we have
developed a formula that predicts the transfer times of SCTP
messages during slow start. This paper validates our formula
through a series of experiments. Also, it demonstrates that

our formula could be employed to accurately predict message
transfer times in VBR traffic by approximating the VBR flow
with a CBR dito. It uses this finding to explore the startup
delay penalty during handover in mobile, real-time traffic
scenarios, and suggests that data-intense traffic, such as video,
could experience delay penalties of 500 ms and more as the
round-trip time goes beyond 100 ms; something that could
adversely affect the service quality as perceived by the end
user. As a next step, we intend to evaluate the consequences
of introducing a bandwidth-aware startup scheme in SCTP.

ACKNOWLEDGMENT

The authors would like to thank the Flux Research group at
the University of Utah for providing the Emulab testbed. The
work has been supported by grants from VINNOVA, Swedish
Governmental Agency for Innovation Systems.

REFERENCES

[1] R. Stewart, “Stream control transmission protocol,” RFC 4960, Sep.
2007.

[2] J. Eklund, K.-J. Grinnemo, and A. Brunstrom, “Theoretical analysis of
an ideal startup scheme in multihomed SCTP,” in Proc. Network Services
and Applications – Engineering, Control and Management (EUNICE),
Trondheim, Norway, Jun. 2010.

[3] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, “Modeling
TCP Reno performance: A simple model and its empirical validation,”
IEEE/ACM Transactions on Networking, vol. 8, no. 2, pp. 133–145, Apr.
2000.

[4] T. D. Wallace and A. Shami, “An analytic model for the stream control
transmission protocol,” in IEEE Global Telecommunications Conference
(GLOBECOM), Miami, Florida, U.S., 2010, pp. 1–5.

[5] G. Cheimonidis, “An Internet mobility framework based on the stream
control transmission protocol,” Master’s thesis, KTH Royal Institute of
Technology, Stockholm, 2010.

[6] J. Eklund, K.-J. Grinnemo, and A. Brunstrom, “Impact of slow start on
SCTP handover performance,” in Accepted for publication in Flexibility
in Broadband Wireless Access Network (FlexBWAN) Workshop, Hawaii,
US, Aug. 2011, To Appear.

[7] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks,” in Proc. Fifth
Symposium on Operating Systems Design and Implementation, Boston,
Massachusetts, U.S., Dec. 2002.

[8] Dummynet homepage. [Online]. Available:
http://info.iet.unipi.it/ luigi/dummynet/

[9] G. V. Auwera, P. T. David, and M. Reisslein, “Traffic and quality
characterization of single-layer video streams encoded with H.264/AVC
advanced video coding standard and scalable video coding extension,”
IEEE Transactions on Broadcasting, vol. 54, no. 3, pp. 698–718, 2008.

[10] P. Seeling, M. Reisslein, and B. Kulapala, “Network performance
evaluation using frame size and quality traces of single-layer and two-
layer video: A tutorial,” IEEE Communications Surveys and Tutorials,
vol. 6, no. 2, pp. 58–78, 2004.

[11] Z. Faigl, S. Lindskog, and A. Brunstrom, “Performance evaluation of
IKEv2 authentication methods in next generation wireless networks,”
Security and Communication Networks, vol. 3, no. 1, pp. 83–98, 2010.

