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Abstract 
Wireless Mesh Networks (WMNs) are an interesting option for extending Internet access to areas where the 
deployment of wireline Internet access is either impossible, more costly, or simply more cumbersome and less 
comfortable. WMNs establish access to the Internet over multiple wireless hops. A mesh client connects to a 
mesh router and the mesh routers form a mesh backbone consisting of wireless links which may operate on 
different channels. Some mesh routers are attached to the Internet via wire-line connections and are hence called 
mesh portals or mesh gateways. This case-study focuses on the estimation of the one-way delay of IP packets 
which we define as the time between entering the mesh backbone and the time when leaving it again at the mesh 
gateway or the last mesh router in the case of intra-mesh traffic. One obvious way to profit from one-way delay 
measurements would be to utilize it as a routing metric. Furthermore, one-way delay measurements could be used 
for selecting the optimal gateway for real-time applications or simply for monitoring the WMN performance. To 
solve this problem this thesis presents TOM++, an improved implementation of the Tool for One-way delay 
Measurement (TOM). The improvements take queuing time and channel switching into consideration when 
performing one-way delay measurements in a multi-radio, multi-channel wireless mesh network based on Net-X. 
This has been accomplished by approximation of the sending time of packets in the transmission queue at each 
intermediate node. TOM++ has been tested and evaluated on the KAUMesh LivingLab testbed, and this resulted 
in an increase of approximately 5% in the one-way delay measurement accuracy.  
 

1 Introduction 
A wireless mesh network is a network that is structured like a mesh with radio links as data bearers. The mesh is 
constructed of mesh routers which connect wirelessly with each other. For Internet connection every mesh 
network needs to have dedicated mesh routers with gateway functionality relay packets between the networks. 
Communication between nodes in a wireless mesh network is broken down into a series of hops. This allows data 
to be sent over a large distance. Traffic in wireless mesh networks is often forwarded to and from a wired network 
through a gateway. There are three generations of wireless mesh networks; Single-Radio, Dual-Radio, and Multi-
Radio. Single-Radio uses only one radio channel for both clients and backhaul, therefore providing merely low 
performance. In a Dual-Radio Mesh the mesh routers are equipped with two radios; one for clients and one for the 
backhaul. The radios can operate at different frequencies so that sending and receiving can be done in parallel. 
Although the performance is improved from Single-Radio Mesh the backhaul is still operating at the same 
frequency on all mesh routers. Multi-Radio Mesh uses different channels for the links in the backhaul that does 
not interfere with adjacent links and one channel for servicing clients on a different interface. This increases the 
performance significantly since each link can be used in parallel. 
 

2 Hybrid Multiradio Architecture 
By increasing the number of interfaces, one can also increase the upper limit of the capacity in the network. More 
channels will be needed to be able to have more interfaces sending at the same time. Depending on the country 
there can be up to 14 channels available in 802.11b/g and up to 13 channels in 802.11a. In a simple approach, 
channels are assigned to interfaces in a static way. While this makes channel assignment simple, it may lead to 
longer routes and network disconnections. In the hybrid multiradio architecture, a node uses multiple interfaces 
for sending and receiving packets. One of these interfaces is called the Fixed Interface, as it is allocated at a fixed 
channel over rather long periods of time compared to the switchable interface. The fixed channel is also selected 
by a fixed channel selection protocol and can automatically adapt in accordance with for example the interface 
situation and the traffic load. The other interface on each node is called the Switchable Interface. It can switch 
dynamically between any of the remaining channels according to traffic demand, and the maximum and minimum 
channel switch interval can be configured. All the data that is sent to a given node must be addressed to the fixed 
channel of the receiving interface since that is the only channel the node always listens on. A node can send data 
through the fixed interface if the receiver shares the same fixed channel; or else the switchable interface of the 



sender will change to the receivers fixed channel, allowing the data to be sent through the switchable interface 
instead. Because of this, the mechanisms do not require common control channels. 
In order to inform neighbors about their fixed interface channel, each node periodically broadcasts a "Hello"-
message on all channels. The message carries the fixed channel of all 1-hop nodes. Through this a node can learn 
the fixed channels of all 2-hop nodes and then use the information to balance the assignment of the fixed 
interface. Once a node changes its fixed channel, it sends out this information including the learned information 
from one hop neighbors. As the time to switch between channels is in the order of a few milliseconds, switching 
on a per packet basis is too high overhead. Instead, once tuned to a given channel, the switchable interface stays 
there for some minimum amount of time to reduce the overhead. However, once the channel is switched, packets 
may arrive that need to be forwarded on a different channel. Therefore, per channel packet buffers are used which 
hold all those packets to be sent out on channels which are currently not served. A simple round-robin channel 
scheduler serves different channel queues over time. 

3 Delay Monitoring 
Monitoring packet delay within a network is important as it allows to infer different characteristics. There are in 
principle two approaches. Active monitoring approaches typically generate probing traffic. This results in an 
overhead and lowers the capacity of the network. However, such active monitoring is flexible as it gives control 
over the generating of monitoring granularity. There are two different ideas for active monitoring: Round Trip 
Time(RTT) and Packet Pairing(PP). The PP idea is if two packets are sent back-to-back they should arrive also 
close by within router queues. At the probing receiver the time when the first packet has been received is then 
compared to the time when the second packet starts to be received. This is called the dispersion or transmission 
time. If it is possible to add a timestamp just before the transmission is made, it will result in a very accurate 
estimation of the transmission time. The downside of this idea is that the clocks at the nodes have to be 
synchronized, since hardware clocks in general are not coordinated and not even equally fast, synchronization is 
difficult. In the RTT idea, no synchronized clocks are necessary, it only needs to record the time until a packet 
returns from the receiver using e.g. ping command. In a wireless environment the downside of this idea is that it 
assumes that the receiver can answer very fast and that the links are symmetric. Due to different switching 
patterns in hybrid wireless mesh networks, such approach would not give an exact time of the one-way delay. 
Another disadvantage of this idea is that additional traffic needs to be generated to update the measurements. 
Information gathered this way will only be available at the node that triggered it. Further, the probing packets are 
very small, and the consequence is that the measurements may underestimate larger packets. 
In passive monitoring, characteristic of sniffed packets are used to infer the delay. The basic idea is to log an 
estimate of the experienced packet delay within the packet header. Each node then can exactly calculate the intra 
node queuing delay and estimate the one hop forwarding delay along the multihop path. Those measured and 
estimated delay components will then be used to update the experienced packet delay. TOM has been 
implemented as a passive monitoring tool that is used to estimate the one-way delay of packets in a wireless mesh 
network. TOM uses two main ideas. The first one is an estimation of the one-way delay as the sum of the exactly 
measurable intra-node queuing and processing delays and the estimated inter-node transmission delays. The 
second idea is that each packet carries delay information in its IP header option field to make it immediately 
available. As the transmission delay can only be approximated due to random backoffs and retransmissions, 
accuracy of TOM can be improved by estimating the error. 

4 System Design 
The goal with this case study is to develop an one-way delay estimation tool for a wireless multiradio mesh using 
channel switching, based on the TOM approach. This requires to measure the time spent in a mesh node due to 
node internal packet processing and queueing, referred to as the measurement. In addition The second 
requirement is to estimate the time it takes to send a packet over the medium between two mesh nodes to also 
approximate the transmission queue waiting time, this is referred to as the approximation. In addition due to 
channel switching operation, an estimation of the unpredictable time which includes packet resends, backoffs and 
channel switches is required. This requirement is referred to as the estimation process. The fourth requirement is 
to transfer the delay estimation values between the nodes so as to update them in order to infer the total delay. 
This is achieved by extending the IP header using the options field with accumulated per hop delay estimates. The 
last requirement is that the software in clients connecting to the network is to remain unmodified. This means that 
the one-way delay measurement will only refer to the wireless mesh network backhaul. Therefore the 
transmission time between a client and the first mesh router will not be included. Also, the time from the last 
mesh router to the destination will not be included. The IP options field will be added by the first mesh router and 



removed by the last mesh router. The difference between TOM and TOM++ is the approximation, estimation and 
channel switches.  

 
Figure 1: Architecture 

 
 

4.1 Measurement Process 
The one-way delay measurement will be updated at every node within the wireless mesh backhaul. The 
measurement process is from when a packet arrives at one node until it is transferred to the hardware transmission 
queue. Once a packet is in the hardware transmission queue, it cannot be updated anymore with delay estimation. 
Therefore, it is required to estimate the time it takes to flush the hardware queue out, which depends on the size of 
the queue. A small size may lead to better estimation but low forwarding performance. A larger size will lead to 
good forwarding performance but higher delay estimation error. As shown in Figure 1 the following points within 
the mesh node architecture are important for measurement/estimation: 
• At point A, a packet arrives at a mesh router, in this example a mesh gateway, and the 
packet is marked with a timestamp by the hardware. 
• At point B the IP header option field is checked for the delay information. If it is present 
the delay fields are updated with the timestamp from point A. Otherwise the delay 
information is added to the option field and initialized. The measurement is started. 
• At point C the packet is put into the correct channel queue where it resides until the 
scheduler switches channels to the channel associated to the queue, then transfers the 
packet to the MadWiFi driver. Once a channel switch happens, delay estimates are reset. This is a key feature that 
distinguishes TOM from the adopted approach in this paper.  
• At point D the sending time tn, where n is the position of the packet in the queue, is 



approximated by dividing the packet size s of this packet and the possible packets in the transmission queue with 
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. Then the measurement is ended by updating the delay fields TOMi resp. 
TOM++i where i is the current one-way delay and i-1 is the previous one-way delay. This is done with the current 
time currTime, the approximation a and the respective estimation e. The packet is then transfered to the hardware 
transmission queue. 

 
TOMi = TOMi-1 - currTime + eTOM 

TOM++i = TOM++i-1 - currTime + a + eTOM++ 
 

• At point E the estimation is updated as described below. 
 

4.2 Estimation Process 
The estimation process includes the backoff, possible packet resends and acknowledgment, which can be seen at 
point E in the Figure 2. The backoff is a random time that precedes any transmission. This time is determined by 
the hardware and the range of values that the time can obtain increases in case of collisions in the medium. It is 
used to resolve contention. A resend can be caused by for example packet collisions and interference in the 
medium, thus it is impossible to predict. The acknowledgment is used to determine when to end the estimation 
and thus its sending time is included in the estimation. Hence the estimation of a packet will be used on the next 
packet to be sent. In TOM++ the estimation is smoothed using an Exponential Weighted Moving Average 
(EWMA) filter that uses weighting factors which decrease exponentially, giving more importance to recent 
measurements while not discarding the old measurements completely. 

 
Figure 2: Estimation Process 

5 Implementation 
As described roughly before, the one-way delay measurement includes several steps, measuring the time a packet 
spends in the node until it is put into the hardware queue, approximating the sending time for the packet and the 
hardware transmission queue, and estimating the approximation error, which includes the backoff and 
retransmission time, and the time for the acknowledgment to return. When a packet arrives at a node it goes 
through the Linux Netfilter, and if the packet arrives from outside the wireless mesh network the three delay fields 
are added to the IP header, initialized and the measurement is started, otherwise the fields are updated to start the 



measurement. Then in the MadWifi driver the measurement is completed, the approximation is calculated, delay 
fields and estimations are updated. The TOM algorithm, however, has no approximation and therefore only uses 
an estimation. Estimations for TOM++ are different in that TOM++ uses a simple averaging function. All 
variables referring to time are in nanoseconds. 
 
In order to estimate the transmission time of the queue in the MAdWifi driver, the following changes have been 
done. The changes to the transmit queue handling revolve around the variable axq_totaltime which has been 
added to the struct ath_txq. This variable contains the approximated total time it will take to send the queue. Each 
time a packet is added to or removed from the transmit queue the approximated time it will take to send that 
packet, explained below, is added to or subtracted from axq_totaltime respectively. At the end of the function 
ath_tx start() the packet is added to the hardware queue. From there on no changes to the packet can be made. 
Thus, near the end of that function, the IP header delay fields are updated accordingly, taking into account the 
approximated time needed to send the current packets plus all other packets in front of the current packet. This is 
different to TOM, which does not include this estimation.  
 
A function from the MadWifi driver is used to approximate the sending time of a packet. The parameters to the 
function includes channel configuration (sc), node state (an) and the packet in a socket buffer (skb) for which this 
approximation should be calculated. The function takes the packet length and adds the sizes of the 802.11 
encapsulation and cyclic redundancy check, encryption overhead, fast-frame header and padding, and tunneling 
overheads. It then uses the hardware abstraction layer (HAL) to calculate the time it will take to send that amount 
of data with the current state and configuration. The value returned by ath_approx_txtime() is in microseconds so 
it is converted to nanoseconds. This required changes to the kernel to add support for floating point operations. 
 
Packets arriving to an empty queue got low delay values. To compensate for this the approximation for a packet 
arriving to an empty queue is set to β* calculatedApproximation and for other packets it is 
calculatedApproximation + axq_totaltime. In this project β is set to 1.5. The approximation and estimation are 
stored in the driver packet buffer (struct ath_buf) and subtracted from the TOM++ IP header delay field. Then the 
measurement is calculated by subtracting the current time from the delay fields, since the time when the packet 
arrived at the node where added to the delay fields as described above. A timestamp, bf->tomppTimestamp, is 
also stored in the driver packet buffer which is used for updating the estimation for both TOM++. This timestamp 
starts the measurement for the estimation. The bf->timestamp is used by TOM. 
 
The estimation is updated in the function ath_tx_processq() which is called by an interrupt when an ACK is 
received. TOM++ estimations are measured from when a packet is head of the transmission queue until an ACK 
for that packet is received. To measure the estimation from when a packet becomes head of the transmission 
queue the timestamp for the next packet is set to the current time. TOM++ estimations are initiated to zero when 
the driver is loaded into the Linux kernel. TOM++ uses an EWMA filter to update the estimation on a per packet 
basis, which is located in the function tomppUpdateDelayEstimation(). The estimation algorithms are reset when 
a channel switch is made in the function ath_chan_set(). TOM++ are reset to zero, because the state of the new 
channel is unknown, since no measurements are made for the estimation on the idle channels. 

6 Evaluation 
The proposed approach has been implemented and evaluated in the KAUMesh livinglab testbed in a multi-
channel multi-radio environment, where traffic is forwarded over multiple hops. All traffic in the tests are 
generated by using MGEN, which is an open source traffic generator. It generates UDP datagrams of configurable 
size and rate. When MGEN generates a packet it marks it with the local system time. Furthermore, when MGEN 
receives a packet, it writes the sending timestamp and the receiving time into a log file. To have an accurate 
measurement of a one-way delay to compare with, the clocks at the sender and receiver needs to be synchronized. 
For this we can use the wired monitoring connection of the mesh nodes. To synchronize the clocks, the start node 
(where the traffic is generated) continuously does NTP updates against the end node via the wired interface. The 
mesh routers are configured to send at a rate of 6Mbps and the packet size for all packets are set to 1000 bytes 
during all tests. 
 
For a better understanding of the graph descriptions the terms offset, spike and shift are explained here. When the 
term offset is used, it means the difference between the delay measured by MGEN and the delay measured by the 
algorithm. The term spike is used for delays noticeably higher than the average delay. If the delay curve of the 
modules shows the same course as the delay curve of MGEN but both curves are out of sync, the packet 
difference is referred to as shift. TOM++ has been evaluated in the KAUMesh testbed to determine the accuracy 
of the improved delay measurement, compared to the TOM implementation. This is done on a stream of packets 



using a normal percent error formula. Note though that the actual delay time is smaller than that reported by 
MGEN and thus these values are not completely accurate but can be seen as a guideline. This is due to that 
MGEN executes in user space and thus an amount of time is taken to transfer the packet to the kernel. 
 
We now describe the test setup for the two hop case. In this setup, node 25 is sending traffc in one stream through 
node 19 to node 17. All nodes use two interfaces ath0 and ath1. They are set up to listen on a fixed channel on 
ath0 and to send on two switchable channels on ath1. The specific channels for each node are set up as follows. 
Node 25 uses channel 36 as fixed channel and can switch among channels 44 and 64. Node 19 uses channel 44 as 
its fixed channel and switches among channels 36 and 64. Finally, node 25 uses channel 64 as fixed channel and 
switches among channels 36 and 44. This set-up is to see how the delay estimations react to the channel switches 
that hybrid multi-radio platforms experience. Channel switches are forced by sending broadcast messages on node 
19. The minimum time to stay on a channel after a channel switch is set to 25ms and the maximum time is set to 
60ms. As we are sending only over two hops one traffic stream, channel switching is limited. However, the 
periodic broadcast of control information (like channel neighborhood information) requires the nodes to 
periodically switch channels as broadcast messages will be broadcasted on all available channels. 
 
Two tests were performed with this setup. In the first test, the stream was sending at a rate of 50 packets per 
second, and then 100 packets per second in the second test. The three spikes in the figure below occur when there 
is a channel switch. The last of these spikes represents a channel switch on node 19. Only packet 3270 arrives at 
node 19 while it is sending on the alternate channel during this channel switch, so this packet is put into the 
channel queue until the node switches back to sending on the other channel. The time spent in the channel queue 
counts as a part of the measurement described above, thus the time reported by both TOM and TOM++ will be 
near accurate for that packet. Packet 3271 arrives when node 19 has started to transmit on the test channel again. 
The delay measurements for this packet is not nearly as accurate. The reported MGEN time is about 6.5ms greater 
than the TOM++ and almost 9ms greater than the TOM delay. This might be because of delays in the hardware 
after the channel switch since this would not be covered by the measured or the approximated part. The figure 
also suggests that packet 3271 waits in the hardware transmit queue for a brief time since the TOM++ delay is 
3.1ms higher than the TOM delay and the increase in delay to packet 3272 is greater in TOM than in TOM++. 
The reason the TOM delay increase is higher might be because the TOM estimation includes the hardware 
transmit queue time while the TOM++ estimation only includes the time from when the packet becomes head of 
the queue until the acknowledgment that it has been sent is returned. At packet 3274 the channel has started 
stabilizing after the channel switch. 

 
Figure 3: 2 Hop test case, 100 packets per second 

The second spike is when a channel switch at node 25 occurs. Here, two packets, 3257 and 3258, arrive while 
node 25 is sending on the alternate channel. Packet 3259 arrives when node 25 has switched to the test channel 
again and therefore it is put directly into the transmit queue with one or two packets ahead of it in the queue as 
shown by the slight increase of delay relative to the normal delay of about 5ms. At the first spike both node 25 
and node 19 switches channel before packet 3233 resulting in a total delay of almost 45ms at packet 3233. Both 
TOM and TOM++ keep up with this rapid change since the packets mainly reside in the channel queue and can 
thus be measured exactly. Node 25 is sending on the alternate channel for two packets thus at packet 3235 the 
delay drops. However, node 19 is still transmitting on the alternate channel until packet 3237 has arrived. As seen 
in the area between the spikes, the TOM++ delay is greater than the reported MGEN time. This is because there is 
no queue buildup and thus the approximation for the packets are 50% higher which is explained in detail in 
section above. The estimation for TOM++ is reset at each channel switch thus the packets in the spikes do not get 



an estimation. This proves to be good as the TOM++ delay gets close to the reported MGEN time. However, 
packets 3238, 3259 and 3271 after each spike have a lower value compared to the reported MGEN time which can 
be because the TOM++ estimation part was reset to zero during the channel switch. 
 
Overall, the TOM++ estimation is 9.3% and 13.2% better than TOM in the 50pkt/s and 100pkt/s cases 
respectively. Note, that due to higher traffic load, larger queues build up. Due to the estimation of the queue 
transmission time, TOM++ estimations are more accurate.  

7 Conclusion 
This report presented a way to improve the TOM algorithm to be more accurate with little added system load in a 
hybrid multi-radio setting involving channel switching. The improvements from the TOM algorithm to the 
TOM++ algorithm is the calculated approximation of the transmission queue and packet sending times and that 
the estimated approximation error is reset at each channel switch. This was done because the TOM algorithm was 
too inaccurate and estimated the above mentioned sending times. Therefore, by calculating the sending time it is 
only the backoffs and packet resends left to estimate which leads to less inaccuracy in the one-way delay 
measurement. This improvement resulted in an increased accuracy. The diffculties in doing this have been mainly 
the hardware abstraction layer. The HAL prevents changes to the packets after transferring them to the hardware 
transmission queue. This results in larger unpredictable delays, which might add up over multiple hops and with 
increasing delay.  
 


