

Small to Medium Sized Harbours

E-Label for Fish Products

Aim:

Create an energy label for fish products from the Fraserburgh area, with the view to developing more sustainable fishing practices and encouraging sustainable consumer behaviour

Work Completed:

- ✓ Chart supply chain for fish products in the Fraserburgh area
- ✓ Select case study product representative of Fraserburgh produce
- ✓ Collect data on the amount of energy consumed at different stages of the fish production process
- ✓ Research on the information management aspects of the labelling system, the labelling architecture and how consumers read and respond to the labels

Case Study Produce:

Mackerel & Haddock

Figure 1:
Supply
Chain
Process
Chart for
Fish
Products

Label to be compliant with international standards (e.g. ISO 14025 Type III Environmental Declarations

Four viable design options investigated:

- Stamp of Approval
- Absolute Numbers
- Traffic Lights
- Sliding Scale

Traffic Lights have high consumer preference, and may be based on either Stamp of Approval or Absolute Numbers formats

Traffic Light: Traffic Light: Stamp of Approval Absolute Numbers

Next steps

- Complete energy modelling of the 'supply chain'
- 2. Consult with producers and retailers
- 3. Test proposed designs with consumers
- 4. Finalise label design based on previous points
- 5. Consider additional information requirements: On pack,
 External (e.g. Website)

Fraserburgh Harbour and Orkney Islands

Monitoring Energy Usage and Meteorological Variables in Fraserburgh

Aim:

Capture energy use and meteorological variables in small to medium sized harbour area to look for flexibility and efficiency based business cases

Objectives:

- Monitor energy usage and availability of renewable energy
- Estimate contribution of other system parameters
- Identify areas to improve or cut down energy usage
- Test model on data from another harbour
- •Promote increases production and use of renewable energy in Fraserburgh
- Promote reuse of industrial waste and dissipated heat

Summary of Work Done

Monitoring energy usage involved:

- •Pre-study of harbour businesses (and their energy use
- Installation of data loggers in business plant-rooms
- Collection of utility bills
- •Analysis of energy consumption & identification of periods of high consumption and flexibility

Instrumentation used for energy measurement:

- Pico-current monitoring kits (CM3)
- Power quality analyser(PQA)

Fig.1: Picture of CM3 installed in one of the plant rooms

Summary of Work Done

•Weather station installed besides light house in Fraserburgh harbour with weatherlink software and linked to a computer in the harbour office Data recoded for wind speed, temperature, wind direction, dew point, humidity and solar energy

Findings

- •Constant power consumption profile by most businesses
- •Use of peak and off peak period meters to cut down energy bills by most businesses
- Lack of the use of heat dissipated by refrigeration systems to warm premises therefore energy is wasted.
- •Primary motivation of stakeholders to reduce energy consumption is to reduce expenditure
- Data recorded from weather station show high wind speed (so potential to incorporate renewables

Conclusions

Potential for reducing energy use by:

- Using renewable energy
- Using heat dissipated for space heating

Work to be completed:

- Complete analysis of data recorded
- •Estimate contributions of other system parameters using models developed from available data
- Test model on data from another harbour
- •Develop an analytical model that can be used to predict energy use in small or medium harbour
- •Identify areas where improved metering or monitoring can improve or cut down energy usage

Orkney Islands

Orkney Islands

- Orkney islands have semi-independent energy grid
- The grid is operating close to full capacity
- •There are 4 MW of micro-renewables which cannot be accommodated by the energy grid at off peak times.
- •The turbines have to be switched off remotely by the utility company at off peak times when it is windy
- •Orkney Islands Council and SSE (utility company) are keen to identify flexibility 'business cases' within the system...
- •...that will allow the micro-renewables to be balanced into the grid
- •A microcosm of e-harbours project

RGU work

- •Orkney islands Council & Scottish Community Resembles providing:
 - energy supply data
 - Energy demand data
 - Weather data
- •RGU to analyse and model data to look for potential flexibility to look for business cases around:
- Energy efficiency
- Smart grids
- •Electric or other alternative propulsion/ storage technology

RGU work

- Data to arrive this week
- •Analysis and identification of business cases to be completed by end of December
- •E-harbours seminar to be held in Orkney in January

Energy Usage in Fraserburgh Harbour

Leontine Kansongue 25/02/2014

Aim:

Monitor energy usage in harbour area with the view to promote the use of renewable energy to improve efficiency and encourage a more sustainable environment.

Objectives:

- Monitor energy usage around the Harbour
- Estimate the contributions of other system parameters
- Identify methods to improve or cut down energy usage
- Develop a model to predict energy use in other harbours
- Increase the production and use of renewables
- Promote reuse of industrial waste, heat dissipated

Work Done

- Organised a site survey and meetings with stakeholders to gain an understanding of:
 - ✓ The equipment & plant in use on site, what it's used for & when
 - ✓ The availability of records, bills or other available historical data
 - ✓ The requirements for energy data acquisition
- Installed energy data loggers in plant rooms to record the power consumed.
- Analysed the data gathered to look at overall patterns of energy consumption and times of high peak and low peak demand.
- Identified gaps, opportunities and made recommendations that will help stakeholders reduce their energy bills.

Instrumentation used for energy measurement

 Pico-current monitoring kits(CM3) Entranon Smiranon

Figure 1: Contents of the CM3

- Power quality analyser(PQA)
- ✓ Calibrated to log data every 10 min

Figure 2: Chauvin Arnoux CA8335 Qualistar PQ Analyser with 4 x 50-6500A Flexi CTs

Installed Kits

Figure 3: PQA installed in plant room 1

Figure 4 : CM3 installed in plant room 2

CM3 Sample Data

Date	Time	ch2				ch3				ch1			
		First	Average	Minimum	Maximum	First	Average	Minimum	Maximun	First	Average	Minimum	Maximun
14-Mar-13	11:40	24	21.9	19.9	24	67	.4 71.	1 67.4	74.9	25.4	23.5	21.7	25.4
14-Mar-13	12:00	13.1	8.8	7.9	13.1	84	.8 61.	7 51.2	84.8	25.1	19.8	17.3	25.1
14-Mar-13	13:00	8	20.7	8	30.1	(68.	1 62.2	73.5	25.3	26.3	17.5	39.3
14-Mar-13	14:00	12.5	20.1	12.3	36.8	65	.9 65.	7 50.8	84.6	22.5	30.8	22.5	41.9
14-Mar-13	15:00	12.6	19.8	12.2	35	49	.5 54.	3 49.5	62.4	23.3	26.2	23.1	32.7
14-Mar-13	16:00	58.8	29.6	12.2	58.8	95	.6 68.	8 50.4	95.6	61.1	38.4	23.5	61.1
14-Mar-13	17:00	26.1	19.4	12.3	26.1	66	.1 53.	9 48.2	66.1	36.3	26.8	23.7	36.3
14-Mar-13	18:00	12.2	19	12.2	27.5	59	.1 59.	7 53.3	66	23.9	40.4	23.9	50.4
14-Mar-13	19:00	23.5	36.7	23.5	53	58	.8 68.	8 58.8	82.5	60.3	71.3	60.3	84.6
14-Mar-13	20:00	32.8	32.6	32.2	33	72	.1 68.	9 66.3	72.1	56.3	57.4	54.7	62.5
14-Mar-13	21:00	30.1	33	25.9	44.4		66 68.	5 64.6	81.7	55.2	58.1	55.2	71.5
14-Mar-13	22:00	26.3	36.7	25.9	74.7	65	.2 73.	9 64.2	107.2	54.8	63.9	53.6	98.4
14-Mar-13	23:00	79.4	71.5	51.1	89.3	111	.7 99.	9 85.2	111.7	102.6	91.5	76.2	102.6
15-Mar-13	00:00	117.4	99.9	79.2	129.2	151	.8 133.	3 112	164.8	134.2	120.8	101.6	149.7
15-Mar-13	01:00	53.9	57.6	39.8	67.5	88	.5 8	9 75.2	102.3	78.4	78.2	65.2	90.7
15-Mar-13	02:00	43.8	48.3	28.9	66.7	79	.1 84.	69.1	99.5	68.7	75.2	58.3	91.5
15-Mar-13	03:00	61.1	48.9	27.4	65.3	93	.2 77.	5 60.5	96	88.1	73.8	57.2	91
15-Mar-13	04:00	40.8	78.5	40.8	108.9	74	.1 102.	2 74.1	127.5	69.1	97.4	69.1	123
15-Mar-13	05:00	78.3	71.9	41.3	95.1	95	.9 94.	9 70.4	112.7	90.8	89.6	67.1	105.9
15-Mar-13	06:00	87.4	65.9	53.7	87.4	114	.1 103.	6 88.6	136.7	109.4	85.8	69.1	109.4
15-Mar-13	07:00	48	28.4	19.9	48	121	.3 77.	4 60.8	121.3	63	40.2	34.7	63
15-Mar-13		19.8	21.2	19.8	26.7	60	.7 62.	4 60.5	64.9	35.3	36	34.6	40.9
15-Mar-13	09:00	26.5	21.5	14.7	27.9	(63.	2 61.1	65.5	43.7	41.2	40.7	43.7
15-Mar-13	10:00	14.7	19.2	14.7	22.6	54	.7 61.	8 54.7	67	40.8	35.3	28.5	40.8
15-Mar-13		24.5	25.6	15.1	33.4	57		5 56.1	65.9	28.7	30.4	28.5	34.3
15-Mar-13	12:00	9.6	7.5	7.1	9.6	68	.5 61.	55.9	68.5	20.5	20.3		25.6
15-Mar-13	13:00	7.3	14.2	7.1	25.2	65		7 62.4	77.4	28.7	22.1	17.1	28.7
15-Mar-13	14:00	7.2	7.3	7.2	7.5		51 53.	8 47.3	59.5	28	18.9	17.1	28
15-Mar-13	15:00	7.2	11	7.2	20	50	.7 52.	5 49	55.9	24.7	19.6	17.1	24.7
15-Mar-13	16:00	7.6	12.5	7.3	20.1	61	.3 5	1 39.8	61.3	25.1	30.9	23.4	45
15-Mar-13	17:00	20	24.1	20	32.8	53	.9 52.	8 52.2	53.9	31.4	31.5		32.1
15-Mar-13	18:00	20	23	20	29.7	51	.9 55.	2 51.9	57.8	31.9	41.5	30.8	48.1
15-Mar-13			31.3		37	55							51
15-Mar-13		28.6	24.6	23.1		56							60.8
15-Mar-13		Cummulat	or ive reading		Daily graphs	Apri		ay graph				ust graph	Septemb

Key Findings

- Average of 1019421.4KWh/year was used per business
- In terms of harbour functions, the key energy users are:
 - ✓ Harbour Administration 53674 KWh per month or 16% of total consumption
 - ✓ **Buying/ selling fish** 28500KWh per month or **8** % of total consumption
 - ✓ Maintaining vessels 18465.55KWh per month or 5 % of total consumption
 - ✓ **Conservation of fish** (ice production) 73253KWh per month or **22**% of total consumption
 - ✓ Fish processing 165914KWh per month or 49% of total consumption.

Flexibility Options

- Peak and off peak meters are already used
- Lightning represent a significant demand for energy
- But LED Flood light are not used
- If LEDs replace CFL lighting the savings in terms of energy and cost will be about **50% of current levels**.

Flexibility Options

- Heat is not recycled
 - ✓ ~ 322.65 tonnes of ice/per year
 - √ ~ 13.5 GJ of heat dissipated/year
 - ✓ ~ 3.17GJ of energy used
- If a full heat recovery system was to be implemented, this will cover up to ~ 3 X Energy; thus export excess heat to other factories...enough to cover 64% of the current energy demand of four businesses
- Most plant and machines were old and energy inefficient- again potential for lower energy costs following significant investment.

Recommendations

- All lights in Fraserburgh harbour should be replaced with LED units
 - ✓ Long term strategy for reducing energy and energy costs
- Use full heat recovery system and save money !!!

Thank you

Any Questions?

n.kansongue1@rgu.ac.uk

