
��

��������	
���	�
���	�����
���
�����

���������������	�
���	�	��
�	��


�	������

���	
������
�	���� ��	
!∀�� �#�����
���
∃���	

�%	�
&�
�
���	�	��
�	��
�	������

���������	��	�
�	�����	��	������	�����
�	��	�	�����������	���	�����������	�����



1 Abstract

In non-static multi-radio/multi-channel wireless mesh networks architectures such as

Net-X, mesh nodes need to switch channels in order to communicate with different

neighbors. Present channel schedulers do not consider the requirements of real time

traffic such as voice over IP. Thus the resulting quality is low. We propose a novel

channel scheduler for the Net-X platform that takes into account packet priorities. We

evaluate the algorithm on the KAUMesh testbed. Our algorithm outperforms the stan-

dard round-robin scheduler both in terms of average delay and jitter.

2 Introduction

Wireless mesh networks (WMNs) are considered to be promising technology for cost-

efficient proliferation of internet access in both sparse rural areas as well as in densely

populated urban areas. In a WMN mesh routers relay traffic on behalf of clients or other

routers and by this form a wireless backbone.

While in the first generation of mesh networks routers only used one radio and one

channel to forward traffic, in the second generation multiple radios and channels are

used simultaneously. This can increase the network capacity drastically, but also adds

extra complexity.

For example, if a node uses more channels than it has cards available, then multi-

channel operation imposes the need for channel switching. According to [8] the channel

switching time on current hardware is between 200µs and 20ms, which causes a very

high overhead for per-packet switched channels. The channel-switching-time is com-

posed of several phases: sending buffered frames in the hardware queue of the NIC,

stopping interrupt service routines of the driver, tuning to the new frequency, re-starting

the interrupt service routines and sensing the medium.

While some of those phases can be shortened significantly by clever hard- and

software-design, others are more challenging to optimize. For example, per-channel

hardware buffers can store frames accross channel switches and thus flushing the buffer

prior to the switch is not needed. Also an optimized design of the RF-filter mask tuning

improves the performance.

In the standard IEEE 802.11 DCF protocol collision avoidance relies to a large part

on correctly detecting the medium status by the means of channel clear assessment

and/or RTS/CTS. Those functions only work well if a node can sense the medium long

enough to hear frame-preambles or RTS/CTS frames [13]. Thus, a node should not

immediately transmit data after a channel switch. We believe that this is a fundamen-

tal shortcoming of the IEEE 802.11 MAC protocol in channel-switched systems, which

needs more investigation. As a result, even good hard- and software design do not al-

low per-packet channel switching with an acceptable overhead when IEEE 802.11 DCF

is applied.

Therefore, multi-radio multi-channel mesh network platforms such as Net-X [4] use

per-channel queues, which are serviced for a longer time span. A scheduler then has

to decide when and for how long a channel is serviced.

1



For delay sensitive traffic such as Voice over IP, the right scheduling strategy is

crucial for providing good end-user quality. Important information such as traffic priority

should be considered as input parameter to the scheduling approach. In this paper we

address the issue of a QoS-aware channel scheduling based on traffic priorities. The

key-contributions are:

• A novel QoS-aware scheduling algorithm.

• An analytical evaluation of the algorithm.

• An implementation of the algorithm in the Net-X platform and a performance eval-

uation.

The remainder of this paper is organized as follows: In Section 3 we introduce the

multi-radio/multi-channel framework Net-X and discuss related work. The design and

implementation of our proposed scheduler is presented in section 4. Section 5 com-

pares the performance of our scheduler to a base-line round-robin scheduler. Finally,

Section 6 presents our conclusions and suggests future improvements.

3 Background and Related Work

3.1 Multi-channel Mesh Networks

Multi-channel protocols and architectures are designed to exploit the available chan-

nels to enhance the overall throughput. According to [5], the classification of channel

assignment protocols can be based on how frequently the channel assignments are per-

formed, therefore the protocols and architectures for multi-radio/multi-channel networks

can be classified as dynamic, semi-dynamic, static and hybrid. Net-X [4] is an hybrid

approach, as it applies a semi-dynamic assignment to the its fixed interface (used pri-

marily for receiving data from neighbors) and a dynamic assignment to the switchable

interfaces (used to transmit data to its neighbors). The semi-dynamic reassignments

to the fixed interfaces is based on the current number of nodes using the same fixed

channel. Therefore, if a node notices that the number of nodes using the same fixed

channel as itself is large, it can reassign its interface to a less used channel and inform

its neighbors.

The channel used by the switchable interface may be changed at any time, without

having to inform the neighbors. Thus, the switchable interface can be used to trans-

mit to neighbors whose fixed interfaces may potentially be on different channels. Net-X

protocol stack includes a channel management module that determines which channel

to assign to each fixed interface, and when each switchable interface may switch its

channel. By judicious use of channels, it is possible to efficiently utilize a large number

of channels in the mesh, even though each node is equipped with only two interfaces.

Since the interface channel-switching may incur a non-negligible delay, a queuing algo-

rithm to buffer packets is deployed in Net-X, as well as a round robin scheduling policy

to transmit buffered packets in order to reduce frequent switching.

2



As shown in [12], unnecessary delays are created in Net-X due to the hello packets

being transmitted consecutively on all the channels. For example, an interface that

services four channels must switch to three other channels and spend at least a minimal

amount of time on each channel before returning to the loaded channel. In order to

avoid such unnecessary delays [12] proposes to replace the round robin scheduler by

the ”delay sensitive” channel scheduler. The objective of the proposed scheduler is to

service more often on the channels that have a higher average queue length. This is

done in [12] by staggering the creation of the hello packets due to the overall benefit

of servicing queues that have a longer average length. It is important to note that this

solution does not make differentiation among service priorities, therefore if two channels

are loaded (eg. one with VoIP traffic and another with TCP traffic), the scheduler will

serve them equally.

3.2 IEEE 802.11e EDCA

IEEE 802.11e is a standard for QoS over IEEE 802.11 based networks (see for exam-

ple [9]). Among other extensions to the original IEEE 802.11 MAC layer, it includes

the Enhanced Distributed Channel Access (EDCA). EDCA allows the priorization of

frames inside a node and among nodes. Inside a node, for each service class a queue

is created, which holds packets of its service class. Queues are served by a virtual

contention resolution mechanism similar to DCF. Furthermore, among nodes the using

different inter-frame times can prioritize frames.

Initially, IEEE 802.11e was not designed for multi-channel/multi-radio networks. For

example, IEEE 802.11e does not consider channel switching. Also, inside a node, each

network card runs its own instance of the MAC protocol, not exploiting information pos-

sibly available from other network cards. However, IEEE 802.11e can be used as a

complimentary design element in multi-channel networks. If, for example, several nodes

compete for the same channel, IEEE 802.11e can still be useful to prioritize the medium

access. IEEE 802.11e and the proposed scheduler are orthogonal approaches. In

this paper we concentrate on the scheduler design and evaluation, but we consider to

combine both techniques in a future work.

4 QoS Aware Channel Scheduler

4.1 Design Goals and Motivation

Existing schedulers do not take into account the priority of packets. Thus it can hap-

pen, that packets with smaller delay budget are delayed unnecessarily long, because a

channel with delay-insensitive packets is served before. For delay sensitive traffic such

as VoIP this will reduce the perceived quality. The goals of our scheduler are thus to

minimize the delay and waiting time for delay sensitive traffic while at the same time pro-

viding reasonable throughput for delay-insensitive traffic at reasonable switching cost.

3



4.2 Scheduling Algorithm

Our scheduling algorithm selects the next channel based on the priority of the current

channel and the priority of all other channels, which have packets to send. We assign

the priority to a channel according to the priority of packets which are queued to be

sent for this channel. If packets with different priorities are queued, the highest priority

among all packets is used. The currently used channel might not have packets queued.

In this case the priorities of packets since the last channel switch are taken into account.

A packet’s priority is determined by its DiffServ Code Point [10]. While DiffServ allows

the definition of multiple traffic classes, for simplicity we only consider a low and high

priority traffic class. The sender or ingress-router marks delay-insensitive TCP-traffic

with low priority, realtime traffic such as VoIP with high priority. The concept could be

extended to multiple priorities, which are even dynamically assigned (for example based

on available delay budget).

The scheduling algorithm is sketched in code listing 1 and is composed of two parts.

The first part (lines 1-8) determines which priorities the current (getChannelPrio(Current

Channel)) and the next channel have. For every priority, the algorithm maintains a

counter served[prio] that represents the number of times that the priority was served.

If the counter exceeds the per-priority configurable threshold Tu,prio a new lower target

priority (target prio) is selected and the current counter is reset to zero. If there are no

channels of the target priority available, the algorithm looks for the next lower priority

(getTargetPrio(prio)). Upon reaching the lowest possible priority, the algorithm starts

over with the highest priority. In the second part (lines 9-12), among all channels of the

new priority (getChannelsByPrio(targetprio)), the channel which has not been served

longest is selected (using getOldestChannel(CandidateSet)).

When a channel is selected it is scheduled for a time of Tmin. Furthermore if after

Tmin there are still packets available to send, the channel gets an extra time of Tde f er,prio.

After this time the channel scheduler is called again to select a new channel. In the rest

of this paper we assume backlogged traffic, i.e. a channel is always scheduled for a

service time S = Tmin + Tde f er,prio. And Tmin and Tde f er,prio are configurable. Switching

from one channel to another requires Ts delay.

Input: Current Channel

Output: Next Channel

prio← getChannelPrio(Current Channel);1

targetprio← getChannelPrio(Current Channel);2

if served[prio] > Tu,prio then3

targetprio← getTargetPrio(prio);4

end5

if prio ! = targetprio then6

Tu,prio ← 0;7

end8

CandidateSet← getChannelsByPrio(targetprio);9

Next Channel← getOldestChannel(CandidateSet);10

Tu,target prio ++;11

return Next Channel;12

Algorithm 1: QoS Aware Channel Scheduling Algorithm

4



4.3 Analysis

In this section we analyze the scheduling performance when two priorities are used. For

example, consider a node has to schedule two low priority channels (L1 and L2) and two

high priority channels (H1 and H2). The channel hopping pattern with our algorithm will

be H1H2L1H1H2L2 and so forth (Tu,L = 1 and Tu,H = 2). In contrast the round robin

scheduler produces a pattern like H1H2L1L2H1H2L1L2.

With regard to those two hopping patterns one can see that the waiting time for high

priority traffic and the throughput for background traffic depends on the switch patterns

and the values of Tmin and Tde f er,prio. In the following sub-sections we will first derive

equations for the channel waiting time and throughput. Then we will apply those models

to an example traffic pattern.

The analysis is based on the following assumptions:

• backlogged traffic

• two different packet priorities

• every channel only serves packets of one priority

• arbitrary number of high and low priority channels

• a fixed data rate

4.3.1 Waiting Time

The waiting time is the maximum time that a channel needs to wait until it will be

rescheduled again. The waiting time has a direct influence on the packet delay. For

a simple case with m high priority (H) and n low priority (L) channels the waiting time

WT (H) for a high priority channel is given in equation 1. It is the sum of the service-

times all low and high priority channels that need to be served before the initial channel

is serviced again. Please note that the service times S(H) and S(L) can be different for

the QoS-aware scheduler, since it allows to have per-priority Tde f er,prio. However for the

round-robin scheduler S(L) equals S(H).

WTQOS(H) = (Tu,H −1)∗S(H)+Tu,L ∗S(L)+(Tu,L +Tu,H)∗Ts (1)

Equation 2 calculates the waiting time for a round-robin scheduler.

WTRR(H) = (m−1)∗S(H)+n∗S(L)+(m+n)∗Ts (2)

4.3.2 Throughput

Apart from the waiting time for the high priority traffic, the throughput of the background

traffic is also important. We assume that the throughput for one channel is proportional

to the amount of time scheduled for this channel. We are aware that the throughput is

dependent on other factors such as the number of collisions and the transport protocol

as well. Yet we believe that channel time is a sufficiently good measure of achievable

5



throughput in our context. Through the use of channel diversity the number of collisions

and neighbors competing for the same channel is reduced.

The cycle length of a channel switch pattern is the number of priority changes after

which the same pattern repeats again. For the QoS-aware scheduler the cycle length is

CYQOS = lcm(
lcm(m,Tu,H )

Tu,H
,

lcm(n,Tu,L)
Tu,L

) (3)

Here, lcm(m,n) denotes the least common multiple of m and n. It calculates when

a pattern is repeated. If Tu,H or Tu,L are 0, the cycle time is m or n respectivily. Using

this equation we express the ratio of the service time within a cycle of a specific class

(H or L) and the total cycle length as

CTQOS(L) =
CYQOS∗Tu,L∗S(L)

CYQOS∗(Tu,L∗(S(L)+Ts)+Tu,H∗(S(H)+Ts))
(4)

and

CTQOS(H) =
CYQOS∗Tu,H∗S(H)

CYQOS∗(Tu,L∗(S(L)+Ts)+Tu,H∗(S(H)+Ts))
(5)

For the round-robin scheduler the amount is given by

CTRR(L) = n∗S(L)
m∗(S(H)+Ts)+n∗(S(L)+Ts)

(6)

and

CTRR(H) = m∗S(H)
m∗(S(H)+Ts)+n∗(S(L)+Ts)

(7)

4.3.3 Example

Using the equations from the previous section we compare the throughput and the wait-

ing time of our QoS-aware scheduler and the round-robin scheduler. The example

makes use of some system and traffic pattern parameters which are used in the real

system evaluation described later on in Section 5. The parameters and their values are

listed in Table 1.

Ts represents the time, which the network card needs to tune to the new channel. It

depends on the card chipset and the driver and is around 4 ms for our NIC and driver.

As discussed in section 2, this value is dependent on many factors and cannot be ar-

bitrarily small. The minimal scheduling time in a channel, Tmin, is also limited by the

implementation factors (e.g. interrupts, timer accuracy and overhead). The standard

Linux timers have an accuracy of about 2 ms [6]. Considering this and the 4 ms over-

head involved in every channel switch, we choose a Tmin of 15 ms as a compromise

between switching overhead and delay. m and n indicate the number of low- and high

priority channels and are a direct result of the traffic pattern.

In contrast to the previous parameters, that are implementation-dependent, Tu,L,

Tu,H , Tde f er,L and Tde f er,H are configurable parameters. We chose the values such that

high priority traffic is served more often (Tu,H > Tu,L) and low priority traffic is serviced

longer (Tde f er,L = 10 ms) each time. Those settings are specific for the given traffic

pattern. By using these parameters, Table 2 shows that the waiting time WT(H) for

QoS-aware scheduler is around 29 ms lower than the one for the round-robin scheduler.

6



Ts 4 ms

Tmin 15 ms

Tu,L 1

Tu,H 2

Tde f er,L 10 ms

Tde f er,H 10 ms for RR, 0 for QoS

m 2

n 2

Table 1: Algorithm Parameters

Value QoS Scheduler Round Robin Scheduler

CT(H) 44.8% 43.1%

CT(L) 37.3% 43.1%

Switching Overhead 17.9% 13.8%

WT(H) 52 ms 81 ms

Table 2: Comparison QoS and Round-Robin Scheduler

However, the QoS-aware scheduler gives the low priority traffic a lower time share. Thus

the throughput of the background traffic should be lower for the QoS-aware scheduler.

There is a trade-off between achieving small waiting time for high priority traffic and

guaranteeing low priority traffic throughput. This trade-off can be controlled by Tde f er,L.

For the given configuration, the waiting time for high priority traffic equals Tde f er,L +45.

Figure 1 depicts this trade-off and compares it to the default round-robin scheduler. It is

important to note that we just vary the configuration parameters of the QoS scheduler

(given by the solid line), and compare it to the waiting time for high priority traffic and

low priority channel time share results of the round-robin scheduler presented in Table

2 (WT (H) and CT (L), given by the intersection of the dotted lines).

The graph can be divided into three regions. In the first region (waiting time < 59ms),

the background traffic has lower time share and the high priority traffic lower delay as

compared to the round-robin scheduler. In the second region (waiting time > 59ms and

< 81ms) the background traffic gets more time share and the high priority traffic has a

lower waiting time. In the third region the QoS-aware scheduler gives the background

traffic more channel time on cost of a higher waiting time for high priority traffic. To

summarize, in the second region the QoS-aware scheduler is always better than the

round-robin scheduler. In the first and third region, the operator can sacrifice either

delay (of high priority traffic) or throughput (of low priority traffics).

For arbitrary traffic patterns, equations (1)-(7) allow to quantify the trade-off between

throughput and waiting time similarly to Figure 1 and how it behaves by varying Tde f er,L.

However not considered in this work, a natural extension to our algorithm is the selection

of the parameters based on a higher-level objective, such as the ratio between gain

of latency (smaller channel waiting time) versus loss of throughput compared to the

standard RR-scheduler.

7



0%

10%

20%

30%

40%

50%

60%

70%

45 50 55 60 65 70 75 80 85 90

Waiting Time High Priority (ms)

T
im

e 
S
h
a
re

 L
o
w

 P
ri

o
ri

ty
 (

%
)

Waiting Time High 

Priority RR

Time Share Low 

Priority RR

1st region 2nd region 3rd region

Figure 1: Trade-off Between Delay and Throughput

4.4 Implementation

We implemented our algorithm by extending the bonding driver from the Net-X platform.

A hybrid multi-channel protocol is used in order to couple the destination address and

the channel used to reach this destination [7]. Figure 2 shows an architectural view

of the bonding driver. When packets arrive from the user space or the routing layer

they are assigned a priority based on the Diff-Serv field in the IP-header. There is one

queue for every channel. If the card is already tuned to the correct channel, packets

are directly forwarded to the network card driver. Otherwise packets are placed in their

respective queues. The scheduling algorithm is called by a timer when the service time

for a channel ends and selects the next channel queue to service based on algorithm 1

or a round-robin scheme.

5 Performance Evaluation

5.1 Evaluation Environment

We evaluated our algorithm on the KAUMesh test bed[2], which is an indoor wireless

mesh network with 20 nodes deployed at House 21 at Karlstad University. The nodes

are based on the Cambria GW2358-4 platform, Linux 2.6.22, MadWifi 0.9.4 and Net-X.

Every node is equipped with three Atheros-based wireless network interface cards. We

aim to minimize wireless link variability factors, therefore the PHY-rate and the routes

are fixed throughout the evaluation. Two interfaces are used for the mesh-backbone

operating in IEEE 802.11a mode and and a PHY-rate of 6 Mbps. The third interface is

used for client access in 802.11b/g mode. By using the IEEE 802.11a channels on the

8



Scheduler

Network
Card 1 (switchable)

Bonding Driver

Network Card 2 (fixed)

Switch channel

Classifier

Locally generated or forwarded packets

ch=1 ch=2 ch=n

Select channel

Forward packets

Figure 2: Bonding Module

backbone, which operate in the 5 GHz-band, we avoid interfere with the campus WLAN

network operated on the 2.4 GHz-band.

Figure 3 depicts the network topology used for the evaluation. It consists of five

nodes each mounted in the ceiling of lab rooms or corridors in House 21. The topology

is simple and controlled to avoid problems such as route breaks, re-routing and bad

links, which will typically occur as the network grows. Node 7 runs an NTP-server.

All other nodes synchronize their hardware clocks against the NTP-server every three

seconds. By this we achieve a clock skew smaller than 1 ms. Please note that the clock

synchronization is not needed for the scheduling, but only for the timestamps used in

the delay measurements.

In our experiments the VoIP traffic is generated by mgen tool [3] using 200 UDP

datagrams per second (CBR) of 168 bytes between nodes 7 and 11 in both directions.

This traffic pattern simulates four concurrent VoIP calls with the G.711 codec. At the

same time, the TCP traffic is generated with the iperf tool [1] between nodes 10 and

21, and nodes 10 and 23, as shown in Figure 3. Therefore, for the given scenario, the

number of high and low priority channels is equal to 2 (m = 2 and n = 2, respectively).

Each experiment run lasted for 55 seconds.

5.2 Results

Latency, jitter and packet loss are key characteristics to be considered while inves-

tigating the performance of voice traffic over multi-radio multi-channel wireless mesh

networks networks. In this section we present the behavior of these metrics while ana-

9



T
C
P

UDP, 200 pkts/sec, 168 bytes

T
C
P

N7
ch=64

N10
ch=112

N11
ch=36

N21
ch=140

N23
ch=48

Figure 3: Network Topology

0

5

10

15

20

25

30

35

40

45

50

Default QoS

A
v
er

ag
e 

L
at

en
cy

 (
m

s)

(a) Latency

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Default QoS

T
C

P
 T

h
ro

u
gh

p
u
t 

(M
b
p
s)

(b) TCP Throughput

Figure 4: Average Latency and TCP Throughput

lyzing the scheduling algorithm. The results represent the average over five repetitions,

while the error bars represent the respective standard deviations.

Understanding latency characteristics is crucial for delay sensitive applications such

as VoIP. According to [11] to obtain a good voice quality the delay imposed by the

network should stay below 150msec, since VoIP user should not tolerate excessive

delays in conversation. The results in Figure 4(a) show the average latency experienced

by the two scheduling strategies studied: round robin scheduling (default) and the QoS-

aware channel scheduling (QoS). We observe that the QoS-aware scheduler decreases

the average latency of the VoIP packets if compared to the round robin scheduler. This

is because the proposed scheduler guarantees that high priority channels carrying VoIP

traffic are preferred in relation to the lower priority channels carrying TCP flows, which

consequently reduces the average TCP throughput as shown in Figure 4(b).

Similarly, excessive jitter makes the service unusable by negatively impacting ser-

vice quality. Since jitter is categorized as the change in latency from packet to packet,

we plot in Figure 5 the latency experienced by the VoIP packets along the measure-

ments. The X-axis represents the VoIP packets’ IDs of one UDP flow between nodes

7 and 11.1 and the Y-axis represents the packet delay in seconds. The graphs show

the behavior of packet’s delay (Y-axis) along the packets generated (X-axis). The spikes

represent the most delayed packets that are waiting on the node’s channel queue to

1Due to space constrains, we plot a range of 300 packet IDs.

10



0

20

40

60

80

100

120

1500 1550 1600 1650 1700 1750 1800
Packet Number

D
ela
y 
(m
s)

Default

0

20

40

60

80

100

120

1500 1550 1600 1650 1700 1750 1800
Packet Number

D
ela
y 
(m
s)

QoS

Figure 5: Voice Packet Delay versus Voice Packet IDs

be transmitted. In contrast, the least delayed packets are the packets not queued, as

the node currently accessing the right channel. We see that by using the round robin

scheme, some VoIP packets can achieve delay of 100 ms or more, in contrast with

60 ms while using the QoS-aware scheme. The network jitter in both schemes is be-

cause of the delay that certain (most delayed) packets experience in the nodes’ queues

while waiting for the next channel transmission opportunity. As expected, our scheme

reduces VoIP latency, and therefore network jitter, as the VoIP’s channels have higher

priority during the scheduling decision than the TCP’s channels.

If compared to the waiting time presented in Table 2, the measured waiting time val-

ues of 60 and 100 ms obtained are within a small error in accordance with the theoretical

analysis from section 4.3, since in the theoretical analysis the time for transmitting the

packet over the air and to processing it at the receiver are not considered.

To better explain the previous results, we plot in Figure 6 the channel hopping pat-

tern for the two schedulers studied. The channel hopping patterns are obtained through

the analysis of the channel switching dynamics in node 10’s switchable interface. The

X-axis illustrates the measurement time in milliseconds and the Y-axis illustrates the

802.11a channels used by the switchable interface. By considering the topology in Fig-

ure 3, we can point out that the channels 36 and 64 are the high priority channels (VoIP

packets) and the channels 48 and 140 are the low priority channels (TCP packets) used.

According to the results, by using the round robin scheme, the average waiting time for

the high (WTRR(36) and WTRR(64)) and the low (WTRR(48) and WTRR(140)) priority

channels were 79, 81, 70 and 68 ms, respectively. However, by using the QoS-aware

channel scheme, the average waiting times for the high (WTQoS(36) and WTQoS(64))
and the low (WTQoS(48) and WTQoS(140)) priority channels were 56, 47, 128 and 101

ms, respectively. In Figure 6 we can also observe the influence of defer-time for the high

(Tde f er,H ) and low (Tde f er,L) priority channels presented in Table 1. For the round robin

11



Default Channel Hopping Pattern 
1

2

3

4

5

0 50 100 150 200 250 300 350 400
Time (ms)

C
h
an
n
el

48

140

36

64 WTRR(64)

WTRR(48)

QoS Channel Hopping Pattern
1

2

3

4

5

0 50 100 150 200 250 300 350 400

Time (ms)

C
h
an
n
el

WTQoS(64)

WTQoS(48)
48

140

36

64

Figure 6: Channel Hopping Pattern for the Default and QoS Scheduler

scheduler, the high and low priority channels make use of the defer-time and therefore

the channel service time can be extend by 10 ms. For the QoS scheduler, the Tde f er,H

is not used and therefore just the low priority channels experience a higher channel

service time.

Applications and end-user devices are designed to tolerate a certain amount of

jitter. This is achieved through the so called jitter buffer, by buffering the data flow and

designing processing algorithms to compensate for small changes in latency occurring

from packet to packet. Depending on the application, the tolerable amount of jitter will

vary. For example, a VoIP service should have a jitter buffer of approximately 80 ms

or less [11]. By achieving a lower waiting time for high priority traffic using the QoS-

aware scheduling, we also guarantee the reduction of the jitter buffer size required by

the nodes. In order to verify that, we plot in Figure 7 the histogram and the cumulative

distribution function (CDF) of the measured delay of VoIP packets for one test run and

both schedulers. The X-axis represents the packet delays and the Y-axis represents

the normalized number of packets mapped inside each interval. The Y-axis in the right

hand-side presents the CDF of the packet delays. From the CDF we note that for the

round robin scheduler more than 40% of packets experience a delay larger than 50 ms.

In contrast, for the QoS scheduler only 8% of the packets experience such delay. The

histogram also shows that the majority of the packets experience a maximum delay of

70 ms and 100 ms for the QoS and default scheduler respectively.

Packet loss can occur due to several factors, such as medium congestion and high

traffic load. The use of a jitter buffer also augments the amount of packet loss since

packets with a delay difference greater than the selected jitter buffer size are also con-

sidered lost. Packet loss, then, can significantly reduce quality of service. We show

in Figure 8 the relationship between the loss ratio of voice packets versus jitter buffer

size for both schedulers. The packet loss ratio consists of packet loss introduced by

the network and the jitter buffer. The packet loss introduced by the network in our mea-

surements is 2.8±1.6% and 1.3±0.5% for the default and the QoS-aware scheduler

respectively. We assume a simple, static jitter buffer that drops packets with an packet

inter-arrival time difference greater than a certain threshold (shown on the X-axis). It

is clear that the introduction of a greater jitter buffer size (e.g. 100 ms) may decrease

12



0

0.1

0.2

0.3

0.4

0.5

0
.0
1

0
.0
2

0
.0
3

0
.0
4

0
.0
5

0
.0
6

0
.0
7

0
.0
8

0
.0
9

0
.1
0

0
.1
1

0
.1
2

0
.1
3

0
.1
4

0
.1
5

0
.1
6

0
.1
7

0
.1
8

M
o
re

Packet Delay (sec)

N
u
m
. 
of
 P
ac
k
et
s 
(n
or
m
al
iz
ed
)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
D
F
 (
%
)

Default

QoS

Default-CDF

QoS-CDF

Figure 7: Histogram of Voice Packet Delay

the packet loss in the system at the cost of further delaying the voice packets. However

we need to note that for the same amount of packet loss (e.g. 5%), the QoS-aware

scheduler requires a smaller jitter buffer size (70 ms) as compared to the round robin

scheduler (100 ms).

6 Conclusion

In this paper, we have presented a new QoS-aware channel scheduling technique for

multi-radio/multi-channel wireless mesh networks. Through the use of traffic priority

information carried in the packet header, we propose a new channel assignment sched-

uler that gives priority to VoIP traffic and still guarantees reasonable through of the

non-priority TCP traffic. The main improvement of this technique is the replacement of

the round robin scheduler by a QoS-aware scheduler that consider traffic priorities. This

technique has been integrated to the Net-X platform and through testbed measurements

we show the reduction in average end-to-end delay and network jitter of VoIP flows for

the proposed QoS-aware channel scheduler.

As future works, we plan to investigate two issues. First, we plan to carry an ex-

tended study where different scenarios with greater number of nodes and different traf-

fic demands are analyzed. In our current performance evaluation, we make use of static

traffic priorities among flows. Therefore, our second work is to evaluate the assignment

of dynamic priorities.

13



0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0.05 0.06 0.07 0.08 0.09 0.1

Jitter Buffer Size (sec)

P
ac
k
et
 L
os
s 
R
at
io
 /
%
)

Default

QoS

Figure 8: Packet Loss Ratio after the Jitter Buffer

7 Acknowledgments

This research is supported by the European Regional Development Fund through the

Interreg IVB North Sea Region Project on ”European Collaborative Innovation Centres

for Broadband Media Services” (E-CLIC), and by National Science Foundation grant

CNS 06-27074.

References

[1] iperf. URL: http://www.noc.ucf.edu/Tools/Iperf/.

[2] KAUMesh Testbed Wiki. URL: http://www.cs.kau.se/cs/prtp/pmwiki/

pmwiki.php?n=Resources.MeshTestbed.

[3] Multi-generator (mgen). URL: http://cs.itd.nrl.navy.mil/work/mgen/.

[4] C. Chereddi and P. Kyasanur and N. H. Vaidya. Design and Implementation of a

Multi-Channel Multi-Interface Network. In Proc. of REALMAN, 2006.

[5] J. Crichigno, M. Wu, and W. Shu. Protocols and architectures for channel as-

signment in wireless mesh networks. Ad Hoc Networks, 6:1051–1077, September

2008.

[6] T. Gleixner and D. Niehaus. Hrtimers and beyond: Transforming the linux time

subsystems. In Linux Symposium, volume 1, pages 333–346, Ottawa, Canada,

2006.

14



[7] P. Kyasanur and N. H. Vaidya. Routing and link-layer protocols for multi-channel

multi-interface ad hoc wireless networks. SIGMOBILE Mob. Comput. Commun.

Rev., 10(1):31–43, 2006.

[8] A. Mishra, V. Shrivastava, D. Agrawal, S. Banerjee, and S. Ganguly. Distributed

channel management in uncoordinated wireless environments. In Proc. of Mobi-

Com’06, pages 170–181, New York, NY, USA, 2006. ACM.

[9] Q. Ni. Performance analysis and enhancements for ieee 802.11e wireless net-

works. Network, IEEE, 19(4):21–27, 2005.

[10] K. Nichols, S. Blake, F. Baker, and D. Black. RFC 2474: Definition of the Differen-

tiated Services Field (DS Field) in the IPv4 and IPv6 headers, December 1998.

[11] S. Ganguly and V. Navda and K. Kim and A. Kashyap and D. Niculescu and R.

Izmailov and S. Hong and S. Das. Performance optimizations for deploying VoIP

services in mesh networks. Selected Areas in Communications, 24(11), 2006.

[12] T. B.-Y. Shen. Experiments on a multichannel multi-interface wireless mesh net-

work. Master’s thesis, University of Illinois at Urbana-Champaign, May 2008.

[13] B. Walke, S. Mangold, and L. Berlemann. IEEE 802 Wireless Systems: Protocols,

Multi-Hop Mesh/Relaying, Performance and Spectrum Coexistence. John Wiley &

Sons, Nov 2006.

15


