Blackcurrants and Human Health: An Update

Gordon McDougall

Blackcurrant Growers Conference 13th March 2013 Thatchers Cider, Sandford, Somerset

Outline of talk

- Introduction
- Berries and antioxidants
- Possible health benefits?
- Examples of new JHI research

Overview and future directions

- "Insufficient intake of fruit and vegetables increases the chances of developing cancers, cardiovascular disease and strokes" World Health Organisation (2003)
- The 3 main causes of premature death in Scotland

Government Laboration to alter our die How do FAV affect health?

Minerals (Zinc)? Vitamins (C and E)? Fibre? Displacement? Lower Fat?

Phytochemicals? Antioxidants?

Berries are a rich source of antioxidants – the two main types are Polyphenols and Vitamin C

Living with oxygen & free radicals

- We "burn" our food with oxygen to release energy
- By-products include free radicals which are VERY reactive. They can damage the body and cause disease.
- Our bodies work hard to remove these radicals and prevent damage
- Dietary antioxidants are proposed to "top-up" our protective systems

Free radicals are involved in the development of cardiovascular disease

- Protein damage and lipid peroxidation leads to loss of membrane integrity, cell damage and cell death
- DNA damage leads to mutations

Stroke, Atherosclerosis,

High Blood Pressure, Heart attack

A simplified version?

Polyphenols as antioxidants

23 May 2000

Auntie Oxidant kicks out the Free Radicals.

Black currant fraction	Cell line	Pharmacological effect	Reference
	CARDIOVASCULAR	SYSTEM	
Juice	J774A.1 macrophage cell line	Increased paraoxanase 1 expression, improving macrophage cholesterol attenuation	Rosenblat et al., 2010 ⁶²
Extract	Human umbilical vein endothelial cells	Increased activation of endothelial NO synthase and dilation of blood vessels	Edirisinghe et al., 2011 ⁶⁹
	NERVOUS SYS	STEM	
Extract	M1 transfected COS-7 cells	Increased recovery of calcium flux in type-1 muscarinic R's	Joseph <i>et al.</i> , 2004 ⁷⁰
	PULMONARY SY	STEM	
Extract (proanthocyanidin)	A549 alveolar epithelial cell line	Induced CCL26 secretion and amplified interferon-gamma	Hurst et al., 2010 ⁷¹
	TUMORS		
Whole fruit extract	HT29 colon cancer; MCF-7 breast cancer	Decreased the proliferation of cancer cells	Olsson et al., 2004 ⁷²
Whole fruit extract	HT29 colon cancer	Inhibited cancer cell growth	Wu <i>et al.</i> , 2007 ⁷³
Whole fruit extract	HeLa cervical cancer	Reduced cell viability	McDougall et al., 2008 ⁷⁴
Juice	Caco-2 colorectal adenocarcinoma; MCF- 7 and MDA-MB-231 breast cancer, AGS stomach adenocarcinoma; PC-3 prostate cancer	Suppressed cancer cell proliferation	Boivin et al., 2007 ⁷⁵
CAPS	Ehrlich ascites tumor	Exhibited cytotoxicity	Takata et al., 2005 ⁷⁶
Press residue extracts	Caco-2, HCT 116 and HT-29 colon cancer	Inhibited cell proliferation	Holtung et al., 2011 ⁷⁷
Skin extract	HepG2 liver cancer	Displayed antiproliferative effect	Bishayee et al., 2010 ⁷⁸

There is considerable evidence for health effects of black currants

Model studies with cell lines

Black currant fraction	Animal model	Pharmacological effect	Reference			
CARDIOVASCULAR SYSTEM						
Oil (GLA)	Spontaneously hypertensive rats	Decreased blood pressure values	Engler, 1993 ⁷⁹			
Olive-blackcurrant-fish oil mixture	Wistar rats	Decreased serum TXA-B2 prothrombotic factor	Pregnolato, 1996 ⁸⁰			
Anthocyanin fraction	Sprague-Dawley rats	Decreased relative amount of hepatic saturated fatty acids and increased plasma tocopherol levels	Frank <i>et al.</i> , 2002 ⁸¹			
Black currant concentrate	Norepinephrine-precontracted thoracic aortas of rats	Induced vasodilation via H1 receptors to increase NO levels	Nakamura et al., 2002 ⁸²			
Oil	Wistar rats	Inhibited accumulation of n-3 PUFA in liver and significantly decreased plasma GSH	Vecera et al., 2003 ⁸³			
Seed oil	Wistar female rat blood samples	Decreased plasma GSH and t- butyl hydroperoxide-induced lipoperoxidation; did not effect hepatic GSH levels	Breinholt <i>et al.</i> , 2003 ⁸⁴			
Anthocyanin fraction	Watanabe heritable hyperlipidemic rabbits	Increased LDL and cholesterol and decreased VLDL content	Nielsen <i>et al.</i> , 2005 ⁵⁶			
Anthocyanin component (delphinidin-3-O- rutinoside)	rod outer-segment membranes in frogs	Inhibited endogenous NO and cGMP release	Matsumoto et al., 2005 ⁸⁵			
Concentrate (delphinidin)	Sprague-Dawley rats	Decreased peripheral vascular resistance	lwasaki-Kurashige et al., 2006 ⁸⁶			

Animal model systems

	NERVOUS SYS	IEM	
Oil (GLA)	Streptozotocin-induced diabetes in mature Sprague-Dawley rats	Modulated TXA2 and increased motor nerve conduction velocity	Dines et al., 1996
	OCULAR SYST	EM	
Juice extract (cyanidin)	Wistar rats and Japan White rabbits	Improved rhodopsin regeneration and dark adaptation by enhancing rhodopsin precursor formation	Matsumoto et al., 2006 ⁸⁸
Extract	1 day old white Leghorn chicks	Inhibited enlargement of the globe component dimensions in artificially induced myopia	lida et al., 2010 ⁸⁹
	PULMONARY SY	STEM	
Leaf extract (proanthocyanidin)	Saline-induced pleurisy and carrageenin-induced right hind limb edema in male Wistar rats	Decreased inflammation and inhibited neutrophilic cellular infiltration	Garbacki et al., 2004 ⁴⁸
	SKELETAL SYS	ТЕМ	
Seed oil	Monosodium urate crystal-induced inflammation in subcutaneous air pouches formed in Sprague-Dawley rats	Inhibited formation of monosodium urate crystal formation	Tate et al., 1994 ⁹⁰
	TUMORS		An
Oil (GLA)	Metastatic 13762MAT:B breast tumor in the lungs of Fischer rats	Reduced the number of foci and tumor burden	Karmali et al., 2004 ⁶¹
Juice	Xenografted Ehrlich ascites tumor in ICR mice	Inhibited turnor growth	Takata et al., 2005 ⁷⁶
Modified CAPS	Xenografted Ehrlich ascities tumor in ICR Mice	Reduced tumor weight	Takata et al., 2007 ⁹²
Skin extract	DENA-initiated and PB-promoted hepatocarcinogenesis in Sprague-Dawley rats	Suppressed the number, size, and volume of hepatocyte nodules	Bishayee et al., 2011 ⁹³
		Lowered the number and area of GGT-positive foci, reduced the expression of HSP70, HSP90, COX-2 and NF-kB	Bishayee et al., 2012 rd
		Diminished lipid and protein oxidation; reduced the expression of iNOS; 3-NT, antioxidant enzymes and Nrf2	Thoppil et al., 2012 ⁹⁵

Animal model systems 2

Black currant fraction	Clinical study	Clinical effect	Reference
	CARDIOVASCULA	R SYSTEM	
Seed oil (GLA)	23 cryptogenic ischemia stroke patients undergoing transesophageal echocardiography, 26 known-cause stroke patients, 57 non stroke controls	Inhibited platelet formation, decreased fibrin formation, and increased anti-coagulant effect	Stone <i>et al.</i> , 1995 ⁹⁶
Concentrate (anthocyanin)	Right trapezius muscles in 20 healthy human subjects	Induced relief of shoulder stiffness and decreased muscle fatigue via improved blood flow	Matsumoto et al., 2005 ⁹⁷
Oil	Randomized, double- blind, crossover study of 15 healthy female subjects administered black currant seed oil supplements	Decreased LDL cholesterol levels when administered with fish oil	Tahvonen et al., 2005 ⁹⁸
Juice	Serum inflammatory markers in 48 peripheral artery disease patients	Reduced serum inflammatory markers such, e.g. C reactive protein	Dalgard et al., 2009 ⁹⁹
Seed press residue	Serum and stool tocopheral concentrations in 36 healthy female subjects	Increased alpha- and gamma- tocopherol serum concentrations	Helbig <i>et al.</i> , 2009 ⁵¹
Oil (soft capsule)	Observational study of 2154 dyslipidemic patients	Increased serum HDL-C protein and lowered triglyceride and total cholesterol in low BMI patients with hyperlipidemia	Fa-Lin <i>et al.</i> , 2010 ¹⁰⁰
20% Juice (anthocyanin)	Randomized, cross-over, double-blind, placebo-controlled acute meal study in 11 female and 9 male healthy volunteers	Did not have significant effect on total plasma nitrate, nitrite, ICAM, or VCAM levels	Jin et al., 2011 ¹⁰¹
anthocyanin	Cross-over study in 12 hypercholesterolemic patients	Increased NO-cGMP activation, improved serum lipid profile, decreased inflammatory markers	Zhu et al., 2011 ¹⁰²

Human studies confirm potential health effects

A useful recent review

Berries and Health: A review of the evidence. Gordon J. McDougall and Derek Stewart

http://www.foodhealthinnovation.com/
media/5637/berries_august_2012.pdf

So what's new?

Work on neuroprotective effects
Research on colon cancer
Research relevant to Diabetes

Intake of blackcurrants influences mouse models of Alzheimer's disease

Berries improve cognitive function through neuroprotective effects

BrainHealthFood

Other ways berry polyphenols can affect human health?

Antioxidant theory? Low levels in serum!

Majority of polyphenols remain in gut

Are these components inactive?

Possible roles

Modulating colonic microbiota?

In-gut antioxidants?
Benefit gut epithelia function / colon cancer,

Modulate digestive processes

Berry polyphenols inhibit growth of colon cancer cells

McDougall et al. (2008) J. Agric. Food Chem. 56; 3016-3023

Colon cancer and polyphenols

Colonic metabolism of berry polyphenols

Colonic bacteria degrade polyphenols

Studies with humans fed berries show increases in

- Phenylacetic acid derivatives
- Phenylpropionic acid derivatives
- Hydroxybenzoic acid derivatives

Laboratory fermentations with faecal bacteria gave similar products

Gill et al, J. Agric. Food Chem. (2010) 58, 10389-10395

Faecal products as effective as berry extracts

Berry polyphenols retain effectiveness as they undergo metabolism in the colon

Berries contribute anticancer activity as they pass through the colon

Control of nutrient availability

 Polyphenols can inhibit digestive processes and slow or modulate nutrient release from food

 Inhibition of lipid digestion – control of blood lipids, CVD, diabetes and obesity

 Inhibition of starch digestion – blood glucose control and type 2 diabetes

Inhibition of starch digestion

Amylase chops into fragments α -glucosidase nibbles off glucose

α-amylase inhibition

Grussu et al (2010) JAFC 53, 2760-2766

α-glucosidase inhibition by berries

Phenol content (mg/ml)

Co-incubation with acarbose

Black currant/acarbose (µg/ml)

Human trial – modified glycemic response

Volunteers given sucrose-loaded black currant (BC) juice or sucrose-loaded high polyphenol BC juice

Human trial – insulin response

Summary

- Berry polyphenols inhibit enzymes involved in starch degradation in vitro
- The inhibition occurs at concentrations easily reached in the gut
- The active components are unknown but differ between amylase and glucosidase (↑ synergy?)
- Berry components can potentiate inhibition by acarbose at low levels
- Initial human studies show promise

Where now?

- Source of polyphenols Wastes, by-products etc
- BrainHealthFood bioactive components from pomace
- Confirm effects at physiologically-relevant doses* and with in vivo metabolites (*includes product format)
- Health Claims?
- Effects of mixtures of components synergies with pharmaceuticals
- Effects of climate, location, agronomy and variety on levels of active components

Acknowledgements

Staff at the James Hutton Institute

Thank you for your attention

Visit http://www.hutton.ac.uk