



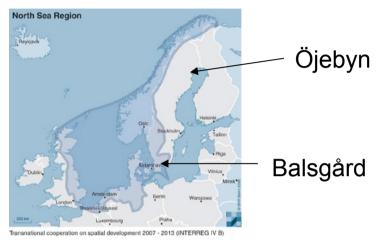
Department of Plant Breeding and Biotechnology Balsgård

### Blackcurrant wine and vinegar

Effects of processing methods on content of beneficial polyphenols – a pilot study

by

PhD Kimmo Rumpunen


Researcher and plant breeder of black currant and sea buckthorn





### Breeding of black currants in Sweden

- Programme restarted in 2006 (based on previous long term breeding efforts)
- The breeding programme is aimed at developing cultivars primarily for organic black currant growing
- Plants are grown in the north (at Öjebyn) and in the south of Sweden (at Balsgård) – aiming at 2000 plants every second year





Breeding populations at Öjebyn



### Breeding of black currants, objectives

- Powdery mildew resistance (screening in greenhouse and in the field)
- Gall mite resistance (new DNA-markers and protocol available)
- Black currant reversion virus resistance (new RT-PCR protocol available for virusdetection)
- Leaf curling midge resistance (new sources identified!)
- Field tolerance against septoria, antrachnose, white pine blister rust (annual screening)



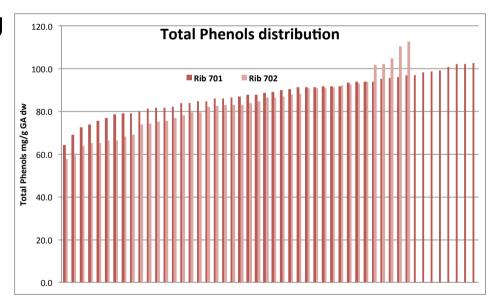












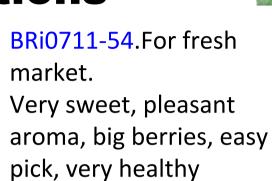





### Breeding of black currants, objectives

- Mechanical harvesting, organic growing (erect plants, proper berry size, strong skin)
- Annual and high yield (plants being adapted to the climate in the north and south, winter and spring frost tolerance)
- Mild typical black currant taste
- High content of ascorbic acid
- High content of anthocyanins
- High content of total phenols








#### Some recent selections







leaves.





BRi0702-154. Intended for processing.
High yield, dry pick, no fruit drop, nice plant shape, healthy foliage. Potential resistance against gall mite.





### Research projects associated with the black currant breeding programme

- Climafruit. Transnational project between the berry industry and research oganisations in Sweden, Norway, Denmark, Germany and Scotland 2009–2013. Organic and conventional field trials at Balsgård. EU/Interreg.
- Ontogenetic and genetic effects on healthpromoting compounds in black currants (buds, leaves and fruits). PhD research project 2010– 2013. SLF.
- Intensified quality-breeding of blackcurrants for northern Sweden. 2012–2014. RJF.









## Background: Why black currant wine and vinegar?

- Black currants have a pleasant aroma and are rich in polyphenols, especially anthocyanins
- Polyphenols, among them antocyanins may improve the function of arteries and have several other health benefits
- Different fermentation approaches may increase bioavailability of polyphenols – eg lactobacilli can metabolise polyphenols
- Harmful effects of easily metabolised carbohydrates significantly reduced during fermentation
- Vinegar consumption may delay gastric emptying and improve glycaemia





### Background: polyphenols in commercial fruit wines

| Source of fruit wine | Sample size | Total phenols (mg<br>GAE/L) |
|----------------------|-------------|-----------------------------|
| Cabernet (grapes)    | 6           | 2005a                       |
| Elderberry           | 5           | 1753a                       |
| Blueberry            | 6           | 1676a                       |
| Black currant        | 6           | 1509a                       |
| Cherry               | 6           | 991b                        |
| Raspberry            | 6           | 977b                        |
| Plum                 | 4           | 555bc                       |
| Apple                | 6           | 451c                        |
| Chardonnay (grapes)  | 6           | 287c                        |
| Riesling (grapes)    | 6           | 250c                        |

(Vasantha Rupasinghe and Clegg, 2007, J Food Comp Anal)





## Materials and methods for black currant wine and vinegar study

- Frozen black currant berries
- Four different processing methods for purée prepartion
- Standardised method for fermentation of wine
- Standardised method for fermentation of acetic acid
- Analysis of total phenols, total anthocyanins, total sugars and titratable acidity
- Analysis of major anthocyanins and rutin through HPLC-DA





### **Puree preparation**

| Puree 1                                                       | Puree 2                                              | Puree 3                                              | Puree 4 (mash)                                 |
|---------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------|
| Frozen berries,<br>wash with hot<br>(55°C) tap water          | Frozen berries,<br>wash with hot<br>(55°C) tap water | Frozen berries,<br>wash with hot<br>(55°C) tap water | Frozen berries, wash with hot (55°C) tap water |
| Grind                                                         | Grind                                                | Grind                                                | Grind                                          |
| Enzymatic<br>treatment<br>(Klerzyme 0.3 ml/<br>kg, 50°C, 1 h) | _                                                    | _                                                    | _                                              |
| Heat 80°C, 15 min, then cool                                  | Heat 80°C, 15 min, then cool                         | _                                                    | _                                              |
| Strain,                                                       | Strain                                               | Strain                                               | _                                              |
| Store at 8°C over night                                       | Store at 8°C over night                              | Store at 8°C over night                              | Store at 8°C over night                        |





#### **Alcohol (wine) fermentation**

- Puree was diluted 1:1 with water
- Soluble solids adjusted to 7° Brix with dextrose.
- Rehydrated yeast (S. cerevisiae) and yeast nutrients were added at 30°C
- Fermentation took place at 24°C.
- Dextrose was added daily during the first four days corresponding to a total amount of 17°Brix.
- Fermentation continued for 7 days then filtration through a 1 mm net was done.
- The wine was then kept at 8° C for another 14 days for sedimentation and was then decanted.



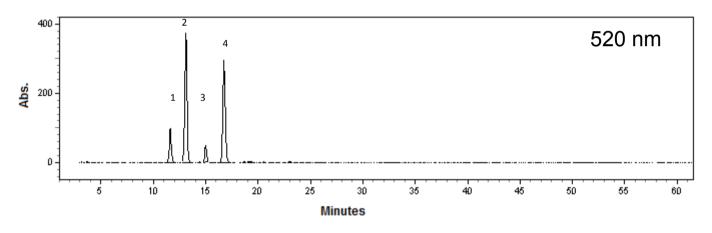




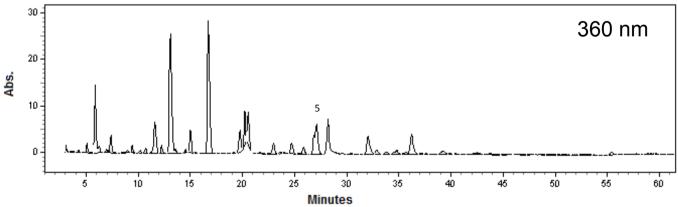
#### Vinegar (acetic acid) fermentation

- A submerged method was used
- Air was forced through the black currant wine by use of aquarium pumps, PVC pipes and filter to obtaine fine bubbles
- Acetic acid bacteria were pre-cultured in diluted wine
- Acetic acid fermentation continued for 10 days at 28°C.








#### **Quantified polyphenols**

1 = Delphinidin-3-*O*-glucoside; 2 = Delphinidin-3-*O*-rutinoside; 3 = Cyanidin-3-*O*-glucoside 4 = Cyanidin-3-*O*-rutinoside; 5 = Rutin

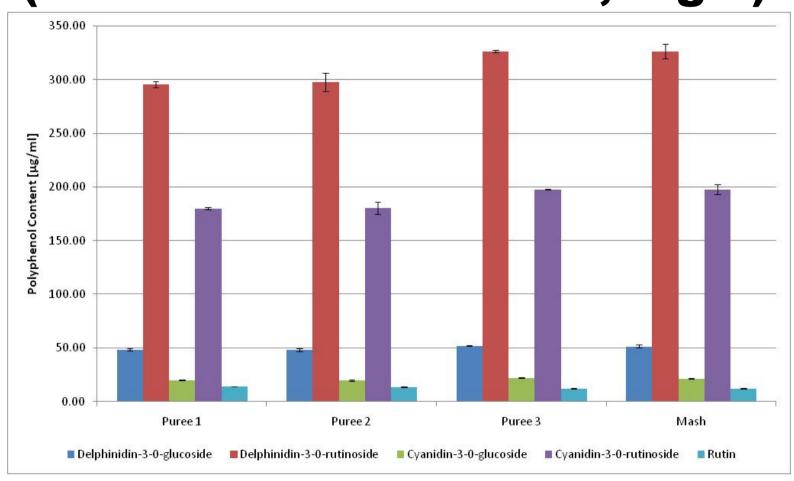


HO 
$$R_1$$
  $R_2$   $R_2$ 








# Phenols and anthocyanins in puree (diluted with water 1:1)

|                           | Puree 1    | Puree 2    | Puree 3   | Mash      |
|---------------------------|------------|------------|-----------|-----------|
| Total phenols (mg GAE/L)  | 3506 ± 101 | 3361 ± 152 | 2549 ± 21 | 2349 ± 72 |
| Total anthocyanins (mg/L) | 457 ± 25   | 466 ± 7    | 474 ± 27  | 467 ± 25  |



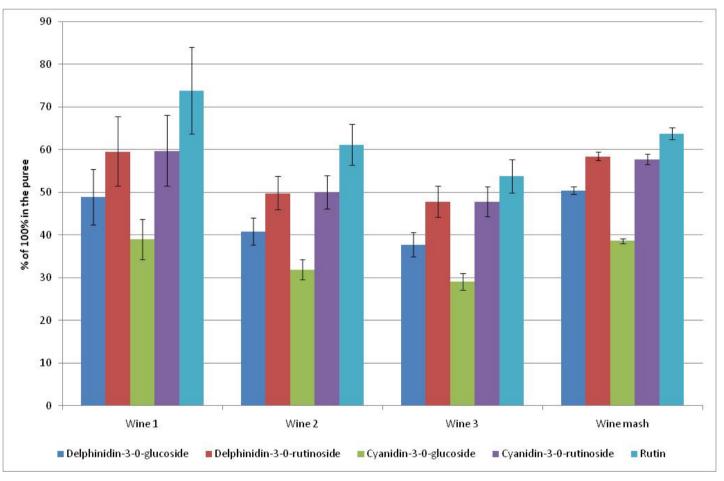


# Specific polyphenols in purée (diluted with water 1:1, mg/L)








#### Alcohol and acidity of the wine

|                                     | Wine 1      | Wine 2      | Wine 3        | Wine 4<br>mash |
|-------------------------------------|-------------|-------------|---------------|----------------|
| Alcohol (vol)                       | 9.1 ± 0.3   | 9.2 ± 0.0   | $9.4 \pm 0.0$ | $9.9 \pm 0.2$  |
| Acidity (as citric acid, g/ 100 mL) | 4.82 ± 0.03 | 4.79 ± 0.04 | 4.63 ± 0.02   | 4.46 ± 0.02    |
| рН                                  | 2.6         | 2.6         | 2.6           | 2.6            |





# Specific polyphenols in wine (% compared to puree)

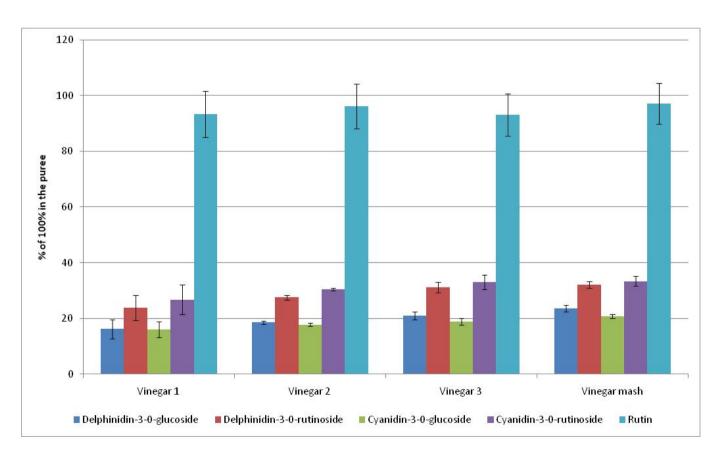


Total polyphenols: 65–80% left

Total anthocyanins: 61–79% left






#### **Acidity of the vinegar**

|                                                    | Vinegar 1     | Vinegar 2     | Vinegar 3 | Vinegar 4<br>mash |
|----------------------------------------------------|---------------|---------------|-----------|-------------------|
| Acetic acid                                        | $3.9 \pm 0.4$ | $3.9 \pm 0.1$ | 4.1 ± 0.3 | $4.0 \pm 0.2$     |
| Total acidity<br>(as acetic<br>acid, g/ 100<br>mL) | 5.4 ± 0.4     | 5.4 ± 0.1     | 5.5 ± 0.3 | 5.4 ± 0.2         |
| рН                                                 | 2.7           | 2.7           | 2.7       | 2.7               |





# Specific polyphenols in vinegar (% compared to puree)



Total polyphenols: 80-105% left

Total anthocyanins: 25-32% left





#### **Conclusions**

- It is possible to ferment black currant berries into wine and vinegar with a high content of polyphenols, though the wine will be very acidic.
- Alcohol fermentation decreased the content of all polyphenols however a large amount remains in the wine.
- Acetic fermentation further decreased the content of anthocyanins
- Rutin seems to be quite resistant to degradation during fermentation compared to the anthocyanins.
- The pre-fermentation processing of fruits significantly influenced the content of total phenols in the puree.
- The different treatments of the puree did not significantly affect the content of acetic acid or total acidity of the vinegar.





Department of Plant Breeding and Biotechnology Balsgård

#### Acknowledgement

This study was enabled due to the joint efforts of Meike Paschke<sup>1</sup>, Gerhard Flick<sup>1</sup>, Michael Rajeev Vagiri<sup>2</sup>, Anders Ekholm<sup>2</sup> and Kimmo Rumpunen<sup>2</sup>

<sup>1</sup>Neubrandenburg University of Applied Science, Department of Food Science- and Bioproduct Technology, Germany

<sup>2</sup>Swedish University of Agricultural Sciences, Department of Plant Breeding and Biotechnology, Plant Breeding Horticulture, Balsgård, Sweden