Climafruit: Transnational trial

Alexandre Foito, Sean Conner, Rex Brennan, Sandra Gordon, Rudolf Faby, Arnfinn Nes, Lillie Andersen, Birgitta Svensson, Kimmo Rumpunen, Hanne-Lindhard Pedersen, Michelle Williams and Derek Stewart

Invergowrie 15.02.2012

• Climate change projections

Temperature anomalies for six oceanic regions (black line) and as simulated by multi-model data (MMD) models incorporating known forcings (red envelope); and as projected (orange envelope) for 2001 to 2100 by MMD models (IPCC, 2007)

Temperature anomalies for six continental-scale regions (black line) and as simulated by multi-model data (MMD) models incorporating known forcings (red envelope); and as projected (orange envelope)for 2001 to 2100 by MMD models (IPCC, 2007)

Temperature projections to the year 2100, based on a range of emission scenarios and global climate models. Scenarios that assume the highest growth in greenhouse gas emissions provide estimations in the top end of the temperature range (IPCC, 2007).

Robust findings on regional climate change for mean and extreme precipitation, drought and snow. This regional assessment is based upon AOGCM based studies, regional climate models, statistical downscaling and process understanding.(IPCC, 2007)

December-January-February (DJF)

• Climate change in a local context

Year	Annual precipitation (mm)	Annual evapotranspiration (mm)	Water balance (mm)	Water balance (mm) model 1	Water balance (mm) model 2
2006	710.3	490.2	220.1	224.7	157.6
2007	741.5	453.7	287.8	301.3	234.1
2008	764.5	437.6	326.9	345.3	277.6
2009	845.8	447.5	398.3	424.2	351.1
2010	773.5	417.0	356.5	379.0	311.8

Modelled and projected losses in Safe Winter Chill compared to 1975 for the year 2000 (top), the middle of the 21st century (middle), and the end of the 21st century (bottom). For each point in time, results are averaged over three greenhouse gas emissions scenarios and three Global Climate Models. Areas that are more than 5u away from the closest weather station are shaded, because interpolated results are unreliable (Luedeling et al., 2011).

- Climate change is inevitable
- A range of robust global predictions
- There is a degree of variability in model predictions
- Weather variability

 There is a lack of information about the relationship of climate with quality traits

- Ribes nigrum
 - Ben Alder
 - Ben Gairn
 - Ben Vane
 - Ben Klibreck
 - Ben Hope
- Rubus idaeus
 - Glen Ample
 - Glen Fyne
 - Octavia
 - Tulameen
 - Autumn Treasure
 - Polka
 - Erika

Rubus fruticosus

- Karaka black
- Loch Ness

- Invergowrie, UK
- Vechta, Germany
- Arhus, Denmark
- Ranna, Sweden
- Apelsvoll, Norway

- Average air temperature
- Maximum air temperature
- Minimum air temperature
- Soil temperature at 30 cm
- Precipitation
- Snow depth
- Relative humidity
- Evapotranspiration rate

- Wind direction
- Average wind speed
- Maximum wind speed
- Minimum wind speed
- Global radiation

Invergowrie temp 2010

Vechta temp 2011

Ranna Temp 2010

Vechta 2011 precipitation averaged over 14 days (mm)

Invergowrie 2010 precipitation averaged over 14 days (mm)

Ranna 2010 precipitation averaged over 14 days (mm)

Location	Maximum day length (h)	Minimum day length (h)
Invergowrie, UK	17.4	6.6
Arhus, Denmark	17.4	6.6
Ranna, Sweden	18.0	6.0
Vechta, Germany	16.6	7.4

Tulameen

400

200

0

Ranna

Location	Bud-burst date	First flower date	
Ranna	-	-	
Vechta	13/03/2011	16/05/2011	
Invergowrie	16/03/2011	19/05/2011	

Vechta

Invergowrie

• Glen Ample

Location	Bud-burst date	First flower date
Ranna	-	-
Vechta	20/03/2011	14/05/2011
Invergowrie	18/03/2011	19/05/2011

• Glen Fyne

Location	Bud-burst date	First flower date	
Ranna	-	-	
Vechta	20/03/2011	10/05/2011	
Invergowrie	18/03/2011	10/05/2011	

Octavia

Location	Bud-burst date	First flower date	
Ranna	-	-	
Vechta	20/03/2011	20/05/2011	
Invergowrie	12/04/2011	27/05/2011	

Octavia Yield per plant 2011 (g)

- Fruits are freeze dried and sent to JHI
- Detailed biochemical analysis
 - Individual anthocyanins and flavonols
 - Individual organic acids
 - Individual sugars
- Correlate agronomical and biochemical data with meteorological data

Anthocyanins	Flavonols	
Delphinidin 3-galactoside	Myricetin 3-rutinoside	
Delphinidin 3-glucoside	Myricetin 3-glucuronide	
Delphinidin 3-rutinoside	Myricetin 3-glucoside	
Cyanidin 3-glucoside	Myricetin 3-(6"-malonyl)glucoside	
Cyanidin 3-rutinoside	Aureusidin glucoside	
Petunidin 3-rutinoside	Quercetin 3-rutinoside	
Peonidin 3-galactoside	Quercetin 3-glucoside	
Peonidin 3-rutinoside	Quecertin 3-(6"-malonyl)glucoside	
Peonidin 3-glucoside	Kampferol 3-rutinoside	
Malvidin 3 galactoside	Kampferol 3-galactoside	
Delphinidin 3-(6"-	Kampferol 3-glucoside	
coumaroyl)glucoside	Isohamnetin 3-rutinoside	

Challenges and Limitations

- Photoperiods are different between sites
- Standard management practices
- Different site-specific characteristics (soil types, altitude, orientation)
- Standardization of scoring systems
- Different experimental designs

 Year-to-year weather variability will provide further data which will be independent of site-specific conditions

Acknowledgements

- Euan Caldwell (and his team)
- Nikki Jennings
- Dorota Jarret
- Mark Young
- Sara Jager
- Rob Stewart
- Rory McLeod

Funding by Interreg IVB as part of the NSR programme: Climafruit (Project No. 35-2-05-09)

