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Abstract: Food quality, security and safety have become topics of considerable
recent interest. With a rapidly growing world population, entailing an ever-
expanding requirement for food, and with the global consumer making higher
and better-informed demands on our crop and food producers, much attention
is being given to how we can meet all these growing needs. Crop growers and
food processors alike are already looking at state-of-the-art technologies such as
metabolomics as a source of new inroads into the generation of detailed knowl-
edge on the biochemical composition of crop products and how they change during
transport, storage and industrial processing. All the steps in the food production
chain, from the moment the plant breeder makes the first cross to the canning
factory delivering to the supermarket distributor, have potentially significant in-
fluence on the quality of the final product the consumer places on the kitchen
table. Metabolomics of crop plants and plant products is already being widely
applied and is generating new information on the complexity of food composition.
In this chapter, some of the main subjects of recent research, concerning both fresh
and processed materials, are covered. Emphasis has been laid on technological
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advances and how we approach food improvement strategies as well as the role of
metabolomics is also finding a role in food safety analysis.

Keywords: crop plants; processed foods; genetically modified organisms; sub-
stantial equivalence; food quality

7.1 Every food chain begins with plants

Food is fundamental to our existence and survival. Fresh food products
are important sources of essential nutrients, vitamins, etc. and indeed, are
generally experienced as being pleasurable to eat. The global population,
and especially those living in the Western world, is also eating increasing
amounts of processed food materials. In fact, even much of the “fresh’ food
we eat has undergone some kind of limited processing in terms of cutting,
packaging, reduced oxygen storage, etc. (Hall, 2006a; Hall et al., 2008, 2010).
There is now an increasing demand both from industry and consumer alike,
for improved knowledge about the nutritional quality of these foods and
how we might design new strategies for enhancing/maintaining food qual-
ity to meet current expectations. Clearly there is a broad opportunity here
for metabolomics to play a role. Indeed, there are already many examples of
different metabolomics approaches having been successfully employed to ex-
tend our knowledge of the biochemical composition of a variety of processed
crop materials and how this can be used in manifold ways, e.g. to further
our understanding of the effect of food processing, to develop new strategies
for assessing food quality, to identify biomarkers for food adulteration, etc.
Furthermore, metabolomics is also already being applied to find out what
happens to components in our food when they enter the human body and
are subjected to external (gut) and internal (blood, liver, etc.) environments.
We all know how eating asparagus rapidly leads to a more ‘fragrant’ urine
(Mitchell, 2001) but the metabolic and catabolic processes behind this phe-
nomenon are still poorly understood. The same is true of the digestion, uptake
and metabolism of most of our food components. Here also, metabolomics
is giving us unprecedented new insights into the integral complexity and
highly interactive nature of food component digestion and, in this regard,
metabolomics is really reflecting a change in scientific philosophy regarding
how we approach such complex biological questions.

7.2 Potato and tomato - both fresh and processed

These two crops represent two of the world’s top four most consumed veg-
etables. Furthermore, they are two of the most widely grown crops globally,
with varieties having been bred to grow in a wide range of climatic conditions
with highly varying temperatures, degrees of humidity, soil composition, day
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length, etc. Considering their importance, it is therefore not surprising that
both have already been the subject of extensive metabolomic investigations.

7.2.1 Potato metabolomics

The importance of potato, the 3 most important global food crop, has meant
that there has been a commensurate effort at the metabolome level with
respect to development, end use, agricultural practices, etc. In particular,
the development of potato per se, via the introgression of different metabo-
lite contents and diversities, with a view to developing new varieties has
been addressed by groups working with wild species collections. For exam-
ple, the Commonwealth Potato Collection (Anon, 2010) — 1500 accessions of
about 80 wild and cultivated potato species — was sub-sampled and analyzed
by gas chromatography-mass spectrometry (GC-MS) focused metabolomics
(Davies, 2006). These analyses clearly showed that specific taxonomic groups
segregated on the basis of both non-polar and polar metabolites (e.g. amino
acids). Interestingly, the alternative approach of metabolite fingerprinting us-
ing direct infusion-mass spectrometry (DI-MS; positive ion mode) was able to
differentiate accessions and taxonomic classifications but this time, due to the
sensitivities of the technology, the components driving the segregations were
identified as mass ions associated with specific glycoalkaloids with some
groups dominated by demissine, others by commersonine, a-tomatine and
dehydro-demissine, or by a-solanine and a-chaconine.

More detailed studies on narrower subsets were undertaken by Dobson
et al. (2008, 2010) who also employed GC-MS based metabolomics to analyze
29 genetically diverse potato cultivars and landraces (Dobson et al., 2008).
This study had an interesting construction, employing 27 tetraploid cultivars
and landraces, comprising 20 x Solanum tuberosum ssp. Tuberosum (16 with
known introgression of a variety of useful traits from a variety of wild species,
and four with no introgressed disease resistance), 7 Chilean landraces, as
well as two diploid cultivars (Solanum phureja). GC-MS polar metabolomics
highlighted several accessions with high specific metabolites (sugars and
amino acids) whilst the corresponding non-polar analyses showed lesser
discrimination and these were largely based on minor fatty acids. The data
did highlight however, that although the variation among the cultivars and
landraces was not great, sometimes there was considerable variation among
field replicates.

In a more recent study by Dobson et al. (2010), confined to four potato
species (Andigena, Phureja, Stenotomum and Tuberosum), the data showed
that there was a large range in levels of metabolites, including those such as
asparagine, fructose and glucose. This could have a significant bearing in the
research effort towards the generation of low acrylamide-forming potatoes
and indeed has been supported by the recent research of McCann et al. (2010)
whose study into wild potatoes and acrylamide forming potential, showed
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that there were species-specific relationships between sugar profiles, specific
sugars and potato chip colour.

Others have utilized the DI-MS approach and Beckmann et al. (2007) em-
ployed this, along with GC-MS, to assess compositional differences in potato
cultivars. Like Dobson et al. (2008, 2010) they found that the flow infusion
electrospray ionization mass spectrometry (FIE-MS) approach suggested that
large differences existed between tubers of individual cultivars. The associ-
ated GC-MS data also identified changes in the metabolites closely associated
with established quality traits of potato. For example, levels of the amino acids
isoleucine, tyrosine and phenylalanine were higher in certain cultivars. These
amino acids are associated with flavour/aroma, post cooking blackening and
bruising.

As stated earlier, the global importance of potato has meant that it has been
the focus of an intense research effort on many fronts and the advent of genetic
modification technologies was no exception and latterly, these approaches
have been accompanied by associated metabolomic analysis to support the
transformations and assessment of the potential for unintended effects. A
GC-MS study by Roessner et al. (2001) on a genetically modified (GM) potato
with altered sucrose catabolism detected ~90 metabolites including sugars,
sugar alcohols, amino acids, organic acids and several miscellaneous com-
pounds. They showed that the specific transformation was accompanied by
metabolites associated with several metabolic pathways increasing in tandem
in the GM tuber compared to the wild type. Conversely, nine metabolites were
shown to be reduced below detectable limits in the GM tubers.

A different analytical approach to the analysis of GM and wild-type potato
was taken by Defernez et al. (2004) who employed Nuclear Magnetic Res-
onance (NMR) and Liquid Chromatography (LC)-MS to analyze about 40
GM lines and controls belonging to four groups of samples (derived from
cv. Record or cv. Desirée and modified in primary carbon metabolism, starch
synthesis, glycoprotein processing, or polyamine/ethylene metabolism). In-
terestingly, the metabolite-related changes accompanying the GM event were
small in comparison to those between the two parent varieties with both
Principle Components Analysis (PCA) and individual compound ANalysis
Of VAriance (ANOVA) supporting this. This finding is not isolated as the
combined GC-MS and flow injection-MS study by Catchpole et al. (2005)
used GC-time-of-flight (ToF)-MS and FIE-MS to provide a comprehensive
comparison of total metabolites in field-grown potato genetically modified
to induce fructan biosynthesis. With the exception of the predicted intended
effects of up-regulated fructans and their expected derivatives, the levels of
metabolites detected were very similar in the GM and its control. Importantly,
metabolite levels in the GM lines fell within the range of the five non-GM
commercial cultivars used as reference material. In fact, the major finding
from the study was the large variation in the metabolite profile between the
five conventional cultivars that overrode the differences between GM and the
associated wild type parent.
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One of the benefits of a metabolomics approach is the breadth of coverage
and this is exemplified in the work of Parr ef al. (2005) who, during the as-
sessment of potato tubers for compositional changes occurring after genetic
modifications to different metabolic pathways, identified kukoamine A, a
spermine alkaloid, and related compounds, in wild-type tubers. Although
this class of compounds had previously been reported in other species (Ly-
cium chinense [Funayama et al., 1995], Aphelandra tetragona [Hedberg et al.,
1996] and Iochroma cyaneum [Sattar et al., 1990]) this was the first report in a
major food species. Indeed following this, the components were subsequently
detected in other Solanaceae such as tomato (Lycopersicon esculentum) and to-
bacco (Nicotiana sylvestris) (Parr et al., 2005). This unexpected discovery in
Solanaceous species highlights the potential and utility of metabolomics ap-
proaches since clearly these metabolites would have remained undiscovered
had a targeted approach been employed.

7.2.2 Fresh tomatoes

No article on metabolomics analysis of crop plants would be complete with-
out attention being given to the tomato. Here however, we shall just give a
short summary of the main findings as this topic has been extensively been
covered elsewhere (de Vos et al., 2010a). Tomato has become the model fruit
crop for many biological studies and is a favorite for many prominent groups
working on the development and application of metabolomics technologies
to forward our understanding of important aspects of the fruits in terms of
development, ripening process, functional genomics analysis, metabolic en-
gineering etc (Bovy et al., 2007, 2010; Schijlen et al., 2008; Fernie & Schauer,
2009; Osorio et al., 2009; de Vos et al., 2010b). Taste is of course a key issue
(Tikunow et al., 2005, 2010; van den Heuvel et al., 2008) but the presence and
potential health-promoting effects of anti-oxidant (poly) phenolic compo-
nents have been the topic of major research efforts (Rein et al., 2006; Butelli
et al., 2008; Gonzali et al., 2009).

Studies utilizing GC-MS, LC-MS and NMR have been employed to as-
sess metabolite changes and variation in (S. lycopersicum) fruits. Signifi-
cantly, Moco et al. (2006) published a Metabolome Tomato Database (MoTo
DB) dedicated to LC-MS based metabolomics of tomato fruit (Grennan,
2009) and this has been accompanied by other groups such as the one
at Cornell (http://ted.bti.cornell.edu/cgi-bin/TFGD/metabolite/home.cgi)
who have also developed Plant MetGenMAP, which facilitates the identifi-
cation of changes in pathways and biological processes from ‘omic (includ-
ing metabolomic) data. The MoTo DB was based on literature research into
metabolites reported to be present in tomato fruit from both wild and culti-
vated varieties as well as transgenic tomato plants. It has subsequently been
expanded following metabolomic analysis of a representative tomato fruit
sample made by combining fruits of 96 different tomato cultivars produc-
ing ripe red, orange-coloured beef, round or cherry fruits at different stages
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of ripening (Tikunov et al., 2005). In addition to this, a selection of purple-
skinned fruits was also analyzed for anthocyanins, which are known only to
occur in certain varieties (Jones et al., 2003) or in transgenic plants (Mathews
et al., 2003; Butelli et al., 2008). Schauer et al. (2005) further expanded the
metabolite knowledge on wild species of tomato in a comparative GS5-MS
study of both wild and cultivated tomato wherein they found that changes
in the metabolite contents of the fruit were identified in the wild species
that are potentially important with respect to stress responses, as well as in
metabolites of nutritional importance. For example, the wild species generally
exhibited lower levels of dehydroascorbate, L-ascorbate, succinate and thre-
onate but selected species showed elevated levels of citramalate chlorogenate,
fumarate and salicylate etc (all in comparison to the cultivated species).

Furthermore, the developmental analysis of tomato, via metabolic engi-
neering, has exploited the opportunities offered by metabolomics with Fraser
et al. (2007a, 2009) highlighting metabolite-metabolite correlations associated
with relative changes following overexpression of Psy-1 (a carotenoid biosyn-
thesis phytoene synthase) compared to the wild type. This showed that there
were multiple metabolite correlations going beyond the expected ‘within-
chemical class” ones, with many primary metabolite-isoprenoid/carotenoid
correlations being identified. Mintz-Oron et al. (2008) further refined this
to specific tissues (peel and flesh) and used a combined GC-MS and ultra
performance (UP)LC-ToF-MS approach to study tomato fruit development.
They found that 100 metabolites were enriched in the peel tissue during de-
velopment including flavonoids, glycoalkaloids and amyrin-type pentacyclic
triterpenoids as well as polar metabolites associated with cuticle and cell wall
metabolism and protection against photo-oxidative stress. The combined ap-
proach, and the inclusion and correlation with associate transcriptomic data,
suggested that the formation of cuticular lipids preceded phenylpropanoid
and flavonoid biosynthesis.

Moco et al. (2008) comprehensively followed this up for ripe tomato fruit
using NMR and LC-ToF-MS and PCA approaches to characterize 50 different
tomato cultivars, including cherry, beef and round types of fruit. These studies
highlighted major sugar differences between the cherry and the beef/round
tomatoes. The beef and round tomatoes could not be segregated suggesting
that they were metabolically similar (at point of sampling). A similar broad
scale metabolic analysis was undertaken by Ursem et al. (2008) who used GC-
MS to analyze 94 tomato genotypes with the aim of applying network anal-
ysis of correlations between abundances of metabolites across the genotypes
to elucidate the biological basis of organoleptic variation in tomato. They
identified several metabolites that exhibited a wide abundance range and
high heritability, such as 2-methoxyphenol and methylsalicylate, whilst other
metabolites such as 2-methylbutanal, 3-methylbutanol, 2-methylbutanol, 2-
isobutylthiazol and phenylacetaldehyde, although high heritable exhibited
a less expansive abundance range. Subsequent network analysis of correla-
tions of the metabolomic data showed largely logical connections with, for
example, methoxyphenol and methylsalicylate being strongly connected and
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the phenolic metabolites (phenylethanol and phenylacetaldehyde) and the
(iso)leucine derived metabolites (2- and 3-methylbutanol, 2-methylbutanal)
similarly showing paired correlations.

A different approach to metabolite analysis was taken by Fraser et al.
(2007b) who applied matrix-assisted laser desorption ionization time-of-flight
mass spectrometry (MALDI/ToF-MS) to tomato, predominantly to focus on
carotenoid metabolism and diversity. They showed that this approach was
useful for the rapid identification and quantification (by isotope dilution)
of carotenoids present in crude extracts from plant tissues and whole cells
and facilitated simultaneous semi-quantitative determination of carotenoid
metabolites (1/z values) in crude plant extracts. As with other metabolomic
approaches the MALDI/ToF-MS lent itself to multivariate analysis and subse-
quent segregation of genotypes. One of the clear advantages of this approach
was the ability to characterize and quantify carotenoids that have generally
proved recalcitrant via LC-MS-based approaches.

Metabolomics has also been employed to determine the effects of abiotic
stress on tomato. Bauer et al. (1997) highlighted changes in the amino acid
pools, specifically asparagine, glutamine and glutamic acid of water-stressed
tomato. More recently, Sainchez Pérez et al. (2009) used a chemometric strategy
based on multivariate curve resolution and alternating least-squares (MCR-
ALS) applied to LC-MS three-way data arrays to assess the impact of carbofu-
ran application, a carbamate pesticide, on tomato. They showed that pesticide
treatment produced altered metabolites reflecting physiological stress.

As highlighted above, GM has been utilized to tease apart the biochemical
pathways in tomato (Fraser et al. 2007a, 2007b, 2009) and the consequence of
the transformation on tomato fruit has been the focus of several studies. Le
Gall et al. (2003) used NMR to study metabolite changes in hydroponically
glasshouse-grown GM tomatoes (with overexpressed flavonols) compared to
the controls. They found that subsequent PCA analysis showed separation
of the samples into discrete groups — GM, control, and according to ripening
stage. An analogous approach was taken by Noteborn et al. (2000), using
also LC-MS, who found that there was a large number of significant differ-
ences (100-200 metabolites) between GM lines and controls in two series of
modified tomatoes. In one of the GM lines, the CrylAbb5 protein from Bacil-
lus thuringiensis was expressed, which showed a differential level of 100-200
metabolites over the three years that the crops were grown compared to the
wild type. Interestingly when the data from all three years were combined no
significant differences at all were obtained suggesting that the environmen-
tal, year-on-year (seasonal) influence exerted a much greater effect than any
consequences from the GM event.

7.2.3 Tomato puree - a model for the food processing industry?

Next to being a fresh product, tomato fruits are also very widely used as
processed foodstuff both in terms of tinned/pasteurized materials and as a
fruit puree concentrate. These products are very widely eaten, in particular
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in many European countries, where they are almost a common denominator
of the daily diet (Capanoglu et al., 2010). The processing of fresh tomatoes
into tomato puree involves a number of washing, chopping, filtration, evap-
oration and Pasteurization steps, all of which can be expected to have some
(as yet unknown) effect on the biochemical composition of the end product.
In the first major study, untargeted high performance (HP) LC-electrospray
ionization (ESI)-quadrupole(Q)ToF-MS has been used to follow this process
from field to can in order to determine which steps in this process have the
greatest impact on the metabolic composition, particularly with regard to
the key anti-oxidant groups, carotenoids and flavonoids. Results revealed
that major changes occurred, usually, but not always, to the detriment of the
anti-oxidant content (Capanoglu et al., 2008). Perhaps the most significant
observation was that the pulverization process proved to be inadequate to
fully destruct the epidermis with the consequence that the removal of this
skin fraction during the filtration step, resulted in a concomitant loss of the
majority of the phenolic components that are known to be solely concentrated
in this tissue in wild-type tomato fruits (Bovy et al., 2002). Additional studies,
some involving metabolomics, others involving more targeted approaches,
have also shown that essentially, processed tomato products are biochemi-
cally, significantly different than their fresh starting materials (for a complete
review of the literature see, Capanoglu et al., 2010). Furthermore, subsequent
cooking in the home is also a major factor in determining what we eventually
ingest and this component in the entire process, farm-to-fork, is still pretty
much a black box regarding what enters our digestive system and hence
also deserves more detailed attention. Metabolomics in the home may be the
next step!

7.3 Grain crops

7.3.1 The cereals

Surprisingly cereals, unlike the Solanaceous crops potato and tomato, have
had a limited exposure to metabolomic analysis. Baker et al. (2006) used NMR
to analyze the metabolite changes in three field-grown transgenic wheat geno-
types expressing additional high molecular-weight subunit genes and the
corresponding parental lines (including a null (azygous) transformant) all
cultivated at two sites. They found, as with the tomato studies of Noteborn
et al. (2000), that site (environment) and not GM was the dominant factor
in metabolite changes. However, separation of the transgenic and parental
lines was observed predominantly due to increased levels of maltose and /or
sucrose in the transgenic line (B73-6-1, highest expressor), and, to a lesser
extent, to differences in free amino acids. GC-MS analysis of material from
one of the growth years corroborated the site-related amino acid changes
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with significant differences in acidic amino acids (glutamic, aspartic) and
their amine equivalents (glutamine, asparagine). Conversely the same lines
showed elevation in proline and y-aminobutyric acid (GABA) at the alter-
native environment. Obert et al. (2004) also failed to find any significant
differences between grain field plots of herbicide-resistant and control lines
using a combined GC and LC approach.

At the more applied end, Beleggia et al. (2009) undertook a combined GC-
MS and GC-static headspace solid-phase micro-extraction (GC-HS-SPME)
metabolomic approach to study the interplay between metabolite and volatile
(organoleptic) components in semolina and pasta obtained from four du-
rum wheat cultivars (Triticum durum Desf., cvs. PR22D89, Creso, Cappelli,
Trinakria). The correlations between cooked pasta volatiles and semolina
metabolites demonstrated that the flavour of the end product may signifi-
cantly differ depending on the durum wheat cultivar employed.

An initial foray into the potential impact of climate change of the wheat
metabolome was reported by Levine ef al. (2008) who assessed the impact of
sub-, optimal- and supra-CO, concentrations on the wheat metabolome dur-
ing development. Their GC and LC-MS analyses revealed that both [CO,]
and physiological age exert an impact with plants grown under high [CO,]
exhibiting metabolite profiles similar to those of plants grown under ambi-
ent [CO,]. More specifically, elevated [CO,] promoted the accumulation of
secondary metabolites (flavonoids) progressively to a greater extent as plants
became mature.

A greater metabolomics effort has been focused toward maize, with tar-
geted studies of maize kernels highlighting the influence of genetic back-
ground and growing season (Ridley et al., 2004; Reynolds et al., 2005), de-
velopmental stage (Seebauer et al., 2004) and environment and agricultural
practice (Harrigan et al.,2007a, 2007b) on the natural variability of metabolites.

Maize metabolite biodiversity has recently been reported by Rohlig et al.
(2009) who employed a multiple fractionation approach to separate maize
grain fatty acid methyl esters and hydrocarbons (fraction I), free fatty acids,
alcohols and sterols (fraction II), sugars and sugar alcohols (fraction III), acids,
amino acids and amines (fraction IV). These were analyzed by GC-MS yield-
ing 300 distinct analytes of which 167 could be identified. Analysis of the
metabolite variation of the grain, from four maize cultivars, at differing de-
velopmental stages, grown for three years, showed that all factors contributed
to differences. Significantly when the data for all fractions per cultivar were
combined, the cultivars could be distinguished by PCA but when the com-
bined data from all three growing seasons were co-analyzed the cultivars
could no longer be distinguished as being different but rather, the collated
data did segregate according to growth year. The data therefore indicate a
more pronounced impact of growing season corroborating previous findings
in potato and tomato. Furthermore PCA analysis of the metabolite variation,
centred on one variety grown for three years at four locations, showed that
there was within-year segregation of location but this differed year on year.
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7.3.2 Rice metabolomics

Rice is world food crop number one. Rice grains are the staple food of a huge
proportion of the world’s population, primarily located in the developing
world. In S.E. Asia alone, rice provides about 75% of total calorific intake
(Garris et al., 2005; Fitzgerald & Hall 2008; Hall et al., 2008; Fitzgerald et al.,
2009). For many, rice is the main source of daily macro-nutrients and micro-
nutrients and, as such, has been the topic of much research into means not
just to enhance crop yield but also grain quality. The latter can be defined
both in terms of nutritional quality and also, quality related to flavour. The
former is of fundamental nutritional importance and the latter has major in-
fluence on cultural preference for particular rice varieties (e.g. Jasmine versus
Basmati). Furthermore, the qualities of so-called, fragrant rice varieties also
determines their market value and hence, import revenues, thus contributing
significantly to the GNP of many of the poorer Asian countries. Neverthe-
less, in each case, both traits concerned directly relate to metabolite content
and it is therefore not surprising that metabolomics is already actively being
considered, and employed, as an advanced tool in rice research. Rice is often
chosen as the model grain crop, not just due to its societal importance, but
also, due to the advantages associated with its small genome size (Garris et al.,
2005). Indeed, rice was chosen by Kind et al. (2009) for a technical study on
the value of available plant metabolomic datasets. They concluded that these
cannot yet be used with confidence to predict how large a plant metabolome
actually is. In this regard, much more uniformity of practice and combination
of efforts is needed before we will gain a true and complete picture of the
richness of the individual plant metabolome.

Metabolomic analyses of rice foliage have already been initiated and meth-
ods have been reported for the use of both Capillary Electrophoresis (CE)-
MS and CE-PDA for the analysis of 88 key (mainly primary) water-soluble
metabolites. Results revealed that on quantification, levels were comparable
to those reported for tobacco but were about 10x lower than is typical for
Arabidopsis (Sato et al., 2004). Later, this work was continued and the same
approaches were used to perform time-resolved metabolomics of rice leaf
metabolic content over a 24-hour light/dark period (Sato et al., 2008). Here,
the synchronous dynamics of 56 primary metabolites was followed simulta-
neously at 1-hour intervals. Unsupervised statistical clustering clearly sepa-
rated the light/dark cycle and the authors predict that hierarchical clustering
of a correlation coefficient matrix could help identify enzymatic bottlenecks
regulating metabolic networks under specific environmental conditions.

Methods for rice grain metabolomics have also been published despite
the technological challenges of such materials, which contain about 90%
starch. Both 1D GC-MS and 2D GCxGC-MS approaches have been devel-
oped for brown (unpolished) rice grains by Kusano et al. (2007). Here, using
a collection of 68 rice genotypes, chosen to represent 90% of the known rice
DNA polymorphism, GC-based analyses of derivatized extracts followed by
multivariate unsupervised PCA and supervised PLS-DS analyses revealed
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discriminatory metabolite /metabolic profiles between contrasting rice types.
The clear added value of GCxGC for higher resolution was emphasized. Shu
et al. (2008) also used GC-MS to analyze derivatized extracts of germinating
rice seedlings. Profiles of a broad spectrum of lipophilic and hydrophilic com-
pounds were followed over a 96-hour period and the ‘extensive metabolic
dynamism’ observed clearly demonstrated the major time-dependent shifts
and causal connectivity in seed metabolism occurring during this critical
phase in the plant life cycle. Methods based on GC-MS/GC-FID (flame ion-
ization detector) have also been used by Zhou et al. (2009) to investigate
potentially unintended metabolic consequences of transgenesis. Examining
polar grain extracts did reveal significant changes in a number of key primary
metabolites in the transgenic lines as compared to non-transgenic, wild type
controls.

A problem associated with nutritive value in cereals has been the anti-
nutrient phytic acid that inhibits iron uptake. Attempts to develop crops
(e.g. rice, maize, barley, wheat) with lowered contents of the anti-nutrient
phytic acid have been described by Raboy (2007). Low phytic acid crop mu-
tants are typically selected on the basis of their altered levels of inorganic
phosphorous (P;). With respect to rice, metabolomics has been employed to
characterize two Ipa rice mutants (Os-lpa-XS110-1 and Os-Ipa-XS110-2), gen-
erated by vy-irradiation of the corresponding wild-type rice (Xiushui 110)
and grown at five field trial sites in China in 2005/2006. The mutant Os-
Ipa-XS110-1 showed a significant segregation from the associated wild type
due to the polar metabolite profiles in this mutant. This was less evident
for the other mutant/wild type comparison but the rice lines were well dif-
ferentiated by growth location (Frank et al., 2009). More detailed analysis at
the compound level of mutation-derived variation showed that these were
largely accounted for by methyl pentadecanoate, galactose, raffinose, myo-
inositol and phosphate, the last two being key components in the phytic acid
biosynthetic pathway (Frank et al, 2007)

Fragrant rices (such as the well — known Jasmine and Basmati varieties)
have also already been the subject of preliminary metabolomics analyses.
Suitable methods for the extraction and concentration of natural volatiles,
using for example SPME and TENAX trapping, followed by GC-MS based
methods for separation/detection have been developed (Verhoeven et al.,
2010). Early results have shown that different fragrant rice genotypes are
readily separated using simple PCA or hierarchical clustering and the im-
portance and relevance of this trait to rice-producing countries has been
emphasized (Hall et al., 2008). Rice fragrance is a factor of key relevance to
market value but is not lacking political sensitivity (Hall et al., 2008; Fitzger-
ald et al., 2009). Metabolomics can play a key role here in helping us to define
better what we mean by rice quality in terms of fragrance and to identify
those compounds of greatest importance in determining positive and neg-
ative sensory characteristics. A more targeted breeding strategy specific for
fragrance characteristics should therefore become possible.
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7.4 Soft fruit metabolomics

The underpinning metabolic components characterizing fruit quality, in-
cluding nutrition bioactivity and safety, and hence public purchase and
consumption, are significantly diverse encompassing simple sugars acids,
amino acids, carotenoids and simple through to complex polyphenolics to
name but a few of the chemical classes. Adding to this complexity is further
subclass diversity with the polyphenols generally being described as com-
prising anthocyanins, flavonols, (iso)flavones, flavanones, catechins, ellagi-
tannins, cinnamates and hydroxyl benzoic acids and stillbenes (Pietta et al.,
2003; D’ Archivio et al., 2007; Mullen et al., 2007). In addition, these subclasses
are further populated by differential levels and pattern of polyphenol poly-
merization, glycosylation, methylation and acylation (Clifford, 2000; Reed
et al., 2005; Xie & Dixon, 2005; Prior & Wu, 2006).

Hand in hand with phytochemical diversity is a broad dynamic range. For
example, in fruit, the total anthocyanin content can be as low as to be virtu-
ally undetectable in fruit such as banana, but can reach levels of 2-10 mg/g
fresh weight in blackcurrant, raspberry, blueberry and the lesser researched
fruits such as choke berry and elderberry (Clifford, 2000). Similarly, other
metabolites impacting upon organolepsis (sugars and organic acids), nutri-
tion (vitamins C, A etc) and putative bioactive components (flavonoids and
ellagotannins) also display similar levels of variation (Anon 2003; Beekwilder
et al., 2005, 2008; Anon 2009a, 2009b).

These factors in toto have meant that there have been only limited attempts
to apply true metabolomics, i.e. an untargeted study of metabolite changes
either by GC-MS, LC-MS, NM, ., to fruit and these have been limited to
melon (Biais et al., 2009a, Q%gg%):spberry (Stewart et al., 2007; McDougall
et al.,2008) and strawberry (Fait et al., 2008). The approach taken by Biais ef al.
(2009a, 2009b) on melon has been one of establishing, within these large fruit,
spatial variation in primary metabolites and using a cross comparative ap-
proach wherein the metabolomics data generated via both "H NMR and GC-
ToF-MS systems were mined for the metabolite trends at a spatial level and
compared using independently performed PCA and multi-block hierarchical
PCA (HPCA), respectively. In general the analytical systems reported on the
same primary metabolites and yielded similar metabolite spatial trends. A
confirmation of this cross comparability was provided by a correlation-based
superblock HPCA for direct comparison of both analytical data sets. Indeed
it is with the HPCA approach that advances were evident allowing different
source data sets, with different levels of sensitivity to be confidently cross-
compared thereby extending the validity of the multi-analytical approach
to metabolomics. For melon at least this has been extended to determine
the underlying factors impacting upon shelf life and associated spoilage via
hypoxia-related fermentation.

For strawberries, fruit development has been studied using a combined
GC-MS and UPLC-QToF-MS approach (Fait et al., 2008), which reported not
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only commonalities in metabolite trends via reporting on primary metabolism
but also extended the analysis into a key sector of fruit quality by reporting
on the variation on 105 secondary metabolites including phenylpropanoid
derivatives both with respect to spatial and developmental presence and
changes. This is a significant step beyond the state-of-the-art, which has
generally confined itself to reporting on changes in specific chemical classes
such as flavonoids (Wang et al., 2003; Panico ef al., 2009), amino acids (Keutgen
& Pawelzik, 2008) accompanying stress or biodiversity (Capocasa et al., 2008).

The application of metabolomics to study trait inheritance or the influence
of the environment on primary and secondary changes is very much in its
infancy with respect to fruit. This approach has been hampered, at least with
respect to fruit breeding, by the sheer numbers of samples (distinct lines and
replication) to be analyzed in a standard segregating cross. Methods to man-
age this have been developed by Stewart et al. (2007) and McDougall et al.
(2008) who have truncated standard LC-MS to give a short column method
that is closer to DI-MS. Their study, employing the same segregating rasp-
berry cross on two distinct environments, one a low input (fertilizer) site with
minimal standard agronomic management and the other one classified as a
high health site with standard and regular inputs of fertilizer and agronomic
management, showed clear differences in global metabolite changes. The MS
data generated from short column direct infusion MS (SC-DI-MS) was subject
to PCA analysis and this showed that year-on-year variation was perhaps the
key driver of metabolite variation at least over the period studied. Interest-
ingly the data for one of the years showed a clear environmental segregation
the source of which can be traced back to the weather during the fruit devel-
opment period, being distinctly dry and that the soils on each site exhibited
differential water retention abilities.

Consideration of each year’s fruit and environment as distinct experi-
ments showed, following reanalysis, that chemical class segregation was
evident across the populations. A wealth of polyphenols was character-
ized following comparison to standards but the most evident amongst these
were the following: cyanidin 3-glucoside, cyanidin 3-sophoroside, cyani-
din 3-glucosylrutinoside cyaniding 3-rutinoside, pelargonidin 3-sophoroside,
pelargonidin 3-glucosylrutinoside and quercetin acetylrutinoside. An appar-
ent feature of the associated PCAs was the clean segregation between the
cyanidin-3-sophoroside and cyanidin-3-rutinoside associated groups. This
is extremely informative and means that the SC-DI-MS approach could fa-
cilitate the rapid identification of (screen for) plant progeny showing rel-
atively elevated levels of these compounds, thereby potentially allowing
targeted breeding, e.g. cyanidin-3-rutinoside-enhanced raspberries. This ap-
proach has subsequently been validated as a ‘near-quantitative” approach,
for (poly)phenolic metabolites at least, by McDougall et al. (2008) and is cur-
rently being expanded, via collaboration with other groups, into strawberry
and blackcurrant breeding. The metabolomic correlation with sensory scoring
is also in progress.
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Clearly the application of metabolomics to soft fruit per se has a long way
to go. However, the speed and range of the technologies, in combination
with the development of statistical approaches that will facilitate metabolite
and sensory cross comparison, mean that there is every likelihood that it will
prosper and develop in this crop sector.

7.5 Metabolomics and our most important beverages -
coffee, tea and wine

Perhaps some of the most heavily processed plant products that we con-
sume are the plant-based beverages. Products such as tea and coffee go
through extensive treatments, post-harvest, which are not only known, but
have been specifically designed to generate a product with a specific chemi-
cal composition. Processes such as fermentation and roasting ensure that the
chemical profile of the final product is wholly different from the freshly
harvested leaves or beans. The conversion of grapes through juice, into
wine, is less intrusive in not involving, e.g. heating steps. However, once
again, the final product has undergone extensive chemical recompositioning
before it reaches the bottle and indeed, this continues during subsequent
storage.

7.5.1 Coffee metabolomics

Coffee is consumed, generally as a hot beverage, worldwide. Coffee extracts
have also found their way into the food and confectionary industry as flavour-
ing agents. Despite huge popularity, widespread use and a long history as a
stimulant, we still lack a great deal of knowledge of those factors important
in determining the quality of the coffee drink and how these relate back to ge-
netic or environmental perturbance and industrial practices. Such knowledge
is essential if we are to improve our understanding of determinant factors
driving coffee quality and uniformity. Metabolomics approaches have al-
ready been seen as a potentially valuable route to rectify this hiatus in our
knowledge.

Coffee is generally prepared from the beans of the shrub Coffea arabica.
Once ripe, the berries are harvested, usually by local farmers after which
they have to be processed, roasted and blended to obtain the desired taste
and quality characteristics. In this process, two key components are therefore
recognized, pertaining to the pre and post-harvest phases. Using a more tar-
geted metabolic profiling approach, Joét ef al. (2009) aimed to reconstruct the
main metabolic pathways in Coffea seeds related to the main seed storage
compounds. Contrasting patterns of sugars and chlorogenic acids accumu-
lation revealed the complexity and dynamic nature of seed development.
Both compound groups are known to have major influences on the sensory
properties of the final product.



c07

BLBK354-Hall

October 29, 2010 21:16 Trim: 234mm x 156mm Series: APR

Crops and tasty, nutritious food — how can metabolomics help? 195

As with other processed products such as wine and tea, where sensory
issues are also crucial, both the genotype and the source of the beans are of
greatimportance. Regarding the source of the starting materials, geographical
location and its related climatic conditions (rainfall, sunlight, soil composi-
tion, etc.) are known to play an influential role. However, as with many
processed products, what happens after harvesting can be equally or even,
more important to the end product. Most metabolomic investigations on
coffee to date, have actually concentrated on this phase of the production
process. Prior to roasting, raw, ‘green’ coffee beans, once harvested, must
be processed, during which the seeds are separated from the fruit wall (de-
hulling). In Brazil, for example, this can be done either through wet or dry
processing, the choice of which is often down to the region or even individual
farmer. During wet processing, the fruit is kept moist and after a short fer-
mentation period the fruit wall can be removed before the isolated beans are
dried in the sun. In dry processing, the entire fruits are dried after which the
dry hulls are mechanically removed. As might be anticipated, both processes
are prone to local differences resulting in differences in final quality and as
the two processing steps are dramatically different, contrasts in composition
are inevitable. Selmar and Bytof (2007), using both biochemical and gene ex-
pression analyses, showed that during wet processing coffee seeds actually
begin the germination process while in dry processing, the seed rapidly un-
dergo stress responses. These differences concomitantly result in detectable
biochemical changes such as a significantly increased level of GABA follow-
ing wet processing. The authors conclude that the ‘peculiarities’” of wet and
dry processing have a significant biochemical effect on the final product and
its distinctive coffee characteristics and thus deserves further investigation.

In an attempt to understand better the drying process, Borém et al. (2007)
followed the changes in cell structure and plasma membrane integrity in ara-
bica beans, which were then later correlated with metabolite profile changes
observed to occur simultaneously during this process (de Vos et al., 2007,
2010). Using SEM/TEM (Scanning Electron Microscopy/Transmission Elec-
tron Microscopy), suboptimal drying conditions were shown to be accom-
panied by membrane breakdown and the loss of sub-cellular organization
and it was predicted that this could be related to loss of quality and the oc-
currence of off-flavours in these beans. Both GC-MS and LC(QToF)MS were
subsequently used in non-targeted metabolomics approaches to reveal both
the changes occurring during coffee bean processing and drying and how
these may relate to the conditions used (de Vos et al., 2007, 201(}). PCA treat-
ment clearly separated the wet and dry treatments and results revealed key
differences in glucose and fructose (but not sucrose) and in certain organic
acids. Taking this work even further, Lindinger et al. (2010) have been able to
show the power of a non-targeted chemometric approach, based on different
analytical methods (PTR-MS (proton transfer reaction) and GC-ToF-MS) to
detect a novel marker for off-flavour in coffee. By first performing sensory
analysis with a trained panel, combined with the choice of well-defined coffee
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preparations, in this case robusta coffee from Ecuador (C. canephora), ethyl-
formate was identified as a head-space marker for roasted coffee of inferior
quality.

While the above work is generally still preliminary and much more can
still be expected from coffee metabolomics, the story of course does not end
there. While quality studies and sensory analyses will reveal more about the
type and origin of quality differences, the fate of the coffee metabolites as
they enter the body and are taken up and metabolized is already also a topic
of investigation. The stimulatory effect of caffeine is of course known, but
coffee is a tremendously rich source of potentially healthy chlorogenic acids
and their derivatives. Allard et al. (2008) employed CE-ESI-ToF-MS to follow
the fate of coffee and tea metabolites after human consumption by monitoring
the biochemical profiles of the urine from 13 individual volunteers. Results
revealed highly significant differences as a result of beverage intake and that
the MS spectra revealed ‘hot spots’ representing groups of discriminatory
molecules deserving further analysis and identification. Stalmach et al. (2009)
performed a similar study and used HPLC-PDA-MS to follow the uptake
and metabolism of chlorogenic acids-enriched coffee for a period of 24 hours
following ingestion. Results clearly revealed that uptake of key chlorogenic
acids is extensive and may take place either in the small or the large intestine
where, in the latter, they can also first be metabolized by the gut flora before
entering the blood. The dynamic complexity of the process is considerable
and one can still only speculate as to the timing and location of the modifica-
tions observed and their potential biological relevance. Two biomarkers for
the consumption of even small amounts of coffee were identified in urine —
dihydrocaffeic acid-3-O-sulfate and feruloylglycine. Both these molecules
are not present in the coffee itself but are likely to be the result of in vivo
metabolism by gut microflora and/or liver detoxification reactions. How
exactly these emerging patterns bear relationship to the underlying molec-
ular and biochemical mechanisms will be the topic of much metabolomics
research for years to come.

7.5.2 Tea metabolomics

With tea (Camellia sinensis) being the most widely consumed non-alcoholic
beverage on the planet, it is perhaps not surprising that tea has already also
been the topic of several metabolomics studies. For example, Thomas et al.
(2006) used metabolic profiling to characterize somaclonal variants derived
from in vitro culture in relation to their quality aspects. However, few papers
have focused on the starting materials. Several have been dedicated to the
potential health benefits of tea as a rich source of bioactive antioxidants, and
on the effects of tea consumption and the fate of tea metabolites after they
enter the human body. Once again, metabolomics is revealing not only the
complexity of the plant materials but also the dynamics of tea metabolites
once they enter our blood system via the digestive tract.
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Tea is grown in about 30 countries and two main products are predomi-
nantly made — green tea, where young leaves are simply rolled, steamed to
reduce oxidation and then dried and black tea. For black tea, the leaves are
gently crushed to break down cellular compartmentalization after which they
are left to ‘ferment’ for 1-2 hours at ambient temperature (in tea—producing
countries, often 25-35°C). This mixing of the cell contents, and subsequent
incubation, is known to result in extensive oxidation and the conversion of
simple phenolics into complex condensed tannins. Consequently, green and
black teas are significantly different not only in appearance but also in chem-
ical composition and their association with potential health benefits is the
cause of much debate and associated research. In an early study, del Rio et al.
(2004) used HPLC-ESI-MS" to compare black and green tea extracts. A wide
range of standard phenolic and alkaloidal reference compounds were used
to identify key discriminatory metabolites. All the identified flavan-3-ols in
black tea were at significantly higher levels and the total flavan-3-ol content
was about 45 times higher than in green tea. In contrast, gallic acid was 20
times higher in green tea. Several theaflavins were detected and identified in
black tea, which, as expected, were undetectable in green tea extracts as these
are known to be formed during the fermentation step (van Dorsten et al.,
2006). All in all, this early metabolomics study demonstrated the value of
MS" as a metabolite identification tool for even trace levels of key flavonols
in foods although the complexity of positional (sugar) substitutions still re-
quires NMR for exact structural determination.

So far, most metabolomic research has focused on green tea, which has had
the greatest association with potential health benefits. In an early metabolite
profiling study, Le Gall et al. (2004) used "H NMR to profile 191 green teas,
including 17 of the jasmine type. Discrimination based on chemometric anal-
ysis in relation to source of origin or quality, was only partially successful
although some samples were readily separable from related ones. Further-
more, some samples were so distinctive that possible biomarkers for use in
authentication were proposed. Fukusaki’s group in Japan has performed ex-
tensive studies on a range of selected green tea samples (Ikeda et al., 2007;
Pongsuwan et al., 2007, 2008). Interestingly, in this case the teas chosen had
already been subjected to extensive quality analysis as part of a professional
tea tasting contest. FI-NIR (Fourier transform-near infra red) spectroscopy
was used by Ikeda et al. (2007) to profile 13 contrasting green tea samples,
selected from a set of 53, and on the basis of the results a reliable, quality-
prediction model was proposed for what appears to be a rapid analytical
method. Subsequently GC-ToF-MS and UPLC-ToF-MS were used as alterna-
tive metabolomic profiling methods. GC-ToF-MS analysis of the full set of 53
professionally tasted teas, followed by chemometrics treatment of the data,
enabled both sample separation and qualification. Discriminatory metabo-
lites potentially linked to quality were also identified (Pongsuwan et al.,
2007). Similarly, LC-MS methods were also found to be successful and again, a
quality prediction model was generated and tested for reliability (Pongsuwan
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etal.,2008). Based on the panel’s sensory quality scores, a number of biomark-
ers for quality, identified with the help of authenticated standards, were
proposed. These included a number of characteristic catechins. Finally, 'H
NMR analyses on the same set of 53 taste-scored samples have also been
performed and again, similar conclusions could be drawn (Tarachiwin et al.,
2007). Unfortunately, little cross-comparison between methods seems to have
been carried out and no attempt seems to have been made to fuse the data
from these same samples, which could have provided an even deeper insight
into the extent of sample differences and enable the development of a more
extensive, multiplex metabolomics — based predictor model for the quality of
green tea.

Inevitably, considering tea is a rich source of dietary antioxidants putatively
linked to health benefits, research has already also begun into the fate of these
metabolites after ingestion. van Dorsten et al. (2006) treated 17 healthy male
volunteers to green and black tea preparations and a caffeine control in a full
scale, cross-over design experiment. The tea consumption was equivalent to
12 cups of tea/day. Subsequent, sequential urine and plasma metabolomics
using high resolution 'H NMR allowed the uptake, metabolism and excretion
of the tea polyphenols to be followed in time. Results clearly revealed a
ready separation of all samples based on treatment. Catabolism products
were detected and alterations to other indigenous metabolites (e.g. blood
sugar was reduced following consumption of both green and black teas)
were observed. Evidence for gut microfloral involvement in tea metabolism
and its general impact on human (energy) metabolism were also presented.
These authors aim to generate a mechanistic understanding of the effect of
tea flavonoids in humans and their effect on intermediary metabolism and
these first results clearly demonstrate the complexity of the dynamics of the
process and the potential added value of a metabolomics-based approach.

7.5.3 Grapes and wine

If there is one food product above all others where the biochemical profile
is immediately linked to the quality and hence often, value, it is wine. The
many nuances of bouquet and taste are legendary and for generations, the
vintage and ferroir (region of production associated with geographical loca-
tion, soil type, sunlight, etc.) are often the determinants of quality and hence,
price. It is, perhaps surprising that, to date, few metabolomic studies have yet
focused on this product or the grapes used in its production. Perhaps there
is a worry that some of the romance will be lost should we finally be able to
define wine purely in terms of its precise biochemical composition, which is
ultimately, what the consumer (or investor!) is purchasing. Nevertheless, it
is to be expected that metabolomics will be widely used in the wine industry
and will help with many aspects of quality control in production, in relation
to authentication issues, storage regimes, etc. Indeed, the term wine-omics
(Anon, 2008) has already been coined and the link between GC-MS, LC-MS
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and NMR approaches to help define previously almost indefinable terms
such as ‘body’ has already been made. As with many processed products, the
complexity is already clear, even without the intervention of metabolomics,
so the challenge is considerable. As well as genotype (grape variety) and
terroir, the manner of fermentation and the strain(s) of yeast used, the subse-
quent manner of barreling and storage will all play a part in determining the
composition of the final product and its sensory properties and hence, overall
quality. That the art of wine-making may be taken, through metabolomics, to
a higher level (Anon, 2008) is nevertheless, perhaps not a premise welcomed
by all.

One pioneering French group published the first preliminary metabolomics
study in 2005 (Periera et al., 2005). '"H NMR was used to profile grape skin
and pulp from a number of grape varieties from four Appellations in the
Bordeaux region with contrasting terriors. Using relatively straightforward
PCA on the data obtained it proved readily possible to separate the samples
being compared in relation to skin vs pulp, variety vs terrior, variety vs vari-
ety, etc. presumably reflecting the high complexity of the mixtures and their
strong correlation with source differences. PCA revealed the importance of
differences in several major metabolite groups, including the sugars, amino
acids and (poly)phenols as being mainly responsible for sample discrimina-
tion. Additional analyses have subsequently been performed recently by a
S. Korean/Danish consortium in a short series of papers (Son et al., 2008,
2009; Lee et al., 2009). Here also, "H NMR was used to investigate differences
between wines of the same grape variety (e.g. Cabernet Sauvignon) obtained
from different world regions (Australia, France, California; Son et al., 2008).
Results showed that following PCA and PLS-DA, the wines were readily
separable and that loading plots revealed many compounds, some known
and some unknown, which were discriminatory. Wines from different grape
varieties were also compared and key differences were attributed to primary
metabolites such as lactate, glucose, glycerol, 2,3-butane diol and several sec-
ondary phenolic compounds. Unfortunately, in this preliminary study, all
samples used had been bought from a local shop and consequently, as no
metadata was available, it is not possible to attribute reliably the differences
observed to specific components of the production process. However, sub-
sequently, the same authors performed a more controlled study where they
collected grapes of the variety Muscat Bailey A from a number of terriors,
and produced wines under controlled conditions. Here, the authors were
then able to relate profile differences to location and potentially, also climatic
effects. High sunlight for example, known already to increase the sugar con-
tent was also found to be associated with reduced levels of other primary
metabolites such as malate, citrate and certain amino acids (Son ef al., 2009).
Follow-up research on Meoru wines, again using '"H NMR, allowed vintage
(2006 vs 2007) and vineyard differences to be readily discerned and again,
many common primary metabolites proved to be discriminatory in com-
plementary PCA loading plots (Lee et al., 2009). Proline levels and certain
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phenolic compounds were clearly different in 2006 and 2007 wines and this
was putatively linked to the key seasonal differences experienced in these
two years. Clearly, these investigations are just preliminary but the potential
of metabolomics has already been proven. With so much hanging on the
importance of seasonal quality differences and the relevance of aspects such
as terrior and variety (blends), a future for metabolomics in this industry is
assured. As with tea and coffee, the metabolism of major wine components
such as the polyphenols has also already become the subject of metabolomics
research (Griin et al., 2008). Once again, the fate of such compounds is seen to
be determined by a combination of gut flora and human metabolism result-
ing in a complex interaction of biochemical and enzymatic reactions leading
to extensive modification and catabolism of the metabolites ingested.

7.6 Food product contamination and adulteration

The food industry, particularly where it concerns processed foods, is regu-
larly faced with issues of products being adulterated or contaminated with
components other than those that should be present. So long as certain com-
ponents are cheaper than other related ones, the possibility of bulking — up
products with the cheaper alternatives and still claiming the full price is for
some, too tempting. For importers and traders, it is however, often difficult
to detect instances of adulteration (Hall et al., 2005, Hall, 2006a, 2006b). Does
a bag of coffee really come from Brazil, or does a bottle of fruit juice really
contain 100% pure orange? Here also is a potential field of application for
metabolomics where, once again, the identification of specific marker com-
pounds for particular products could lead to a relatively cheap and simple
detection system for authenticity (Hall, 2006a). An early example, is the de-
tection of cheaper vegetable oils having been used to adulterate expensive
virgin olive oils by using DI-MS in analyses lasting just a couple of minutes
(Goodacre et al., 2003). Shortly after, Reid et al. (2004) used SPME-GC together
with chemometrics to establish a method to detect the presence of apple
pulp used to bulk up strawberry fruit purees. Volatile compounds (about 35)
were found to be significantly different in the adulterated samples and using
GC-MS, three of these were identified to be hexanoic acid, 2-hexenal and
a-farnesene, which are known key apple aroma components. Detection lim-
its were however disappointing as the method did not prove reliable when
adulteration levels fell below 25%. Le Gall et al. (2004) also speculated on
the potential of using 'H NMR to identify biomarkers indicative of the type
and source of green teas as did Schaneberg et al. (2003) for the sourcing of
Ephedera botanicals used in alternative medicines. Alternatively, the value of
using of omics approaches, including metabolomics, to detect contaminating
aflatoxins in various foodstuffs has been speculated upon by Bhatnagar et al.
(2008) as an alternative to the current laborious targeted methods.
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That there is great demand for automated adulteration/quality control
tests is clearly evident from the SGF (Spin Generated Fingerprint) Profiling™
system developed by one of the world’s main NMR manufacturers (Rinke,
2008). This 'H NMR based system has been developed specifically for the
food industry and its monitoring bodies for use in the automated detection
of the adulteration/purity /authenticity of source of commercial fruit juices.
The SGF profiling method is simple and rapid and has been developed to the
extent that, being backed up by a major spectral database of >3000 fruitjuices,
the manufacturers are able to detect down to 10% adulteration of orange juice
by mandarin juice (which is cheaper) and determine if additives (such as extra
sugars) have been used. The database is also already sufficiently extensive
so that it is now also possible to predict reliably the country of origin of
particular fruit products (Schiitz et al., 2008). It is envisaged that many similar
applications will be developed both for adulteration monitoring as well as
quality control in the food processing industry.

7.7 Metabolite profiling technologies used to evaluate
crop safety

Metabolomics has been defined as the ‘comprehensive analysis of all metabo-
lites present in an organism’, (Fiehn, 2002). Currently this objective repre-
sents an impossible task, and in many cases, is inappropriate and unnec-
essary. As a consequence, four classifications of metabolomic analysis have
emerged. Firstly ‘targeted analysis’, which relates to the quantitative de-
termination of a limited number of key compounds. “Metabolite profiling’,
refers to the analysis of a specific pathway or metabolite groups. The third
category ‘metabolomics’, is the exhaustive determination of metabolites in
an extract from an organism. Finally ‘metabolite fingerprinting’, relates to a
characterized profile of an extract/organism in which peak identification is
not essential. Many of these terms have become interchangeable throughout
the literature and virtually all these approaches have been evaluated and
applied to safety assessment of novel foodstuffs.

7.7.1 The generation and standardization of the
biological material

Before embarking on the determination of chemical composition for assess-
ing substantial equivalence, it is essential to standardize both the biological
and analytical system adopted, so that phenotypic variation between samples
can be determined accurately. Typically biological variation and the growth
or preparation stages are the main source of variation; analytical variation
is often minimal in comparison. Growth plots should be randomized and
the adequate number of controls interspersed in order to minimize intra and
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inter plant variability. In the case of GM crops the appropriate controls (e.g.
an azygous or empty vector line) must be included. Harvesting of plant tis-
sue should ideally occur at the same daily time point and the tissue from all
samples should represent an identical developmental stage. Optimal storage
and preparation conditions need to be determined at all stages of analysis.
Most procedures require extraction of metabolites from the matrix, therefore
homogenization must be performed. Incomplete homogenization can be a
major cause of variation, thus it is essential that the material is homogenized
into a homogeneous solution to minimize intra-sample variation. Consider-
ation of these parameters is essential to the overall metabolomic outputs and
must not be ignored.

7.7.2 Evaluation of novel foodstuffs using targeted
metabolite profiling

Decades of food analysis has revealed a set of key known, and well-
characterized, metabolites essential for quality and health attributes. There-
fore, an unbiased semi-quantitative method that determines numerous com-
pounds is typically inappropriate in this instance. Instead, an efficient extrac-
tion procedure and focused analytical method providing optimal detection
as well as quantification is the objective. Elegant metabolite profiling proce-
dures using GC-ToF-MS and LC-MS/MS for volatiles contributing to aroma
and taste (Tikunov et al., 2005) as well as phenolics that confer health and
colour traits have been described (Moco, et al., 2006; Stewart et al., 2007).

A major class of pigments typically present in fruits and vegetables that are
in part responsible of health and colour traits is the carotenoids. These pig-
ments are essential dietary components for humans. -carotene is the most
potent precursor of vitamin A, while other carotenoids reduce the risk of
incidence of age-related diseases such as macular degeneration (e.g. zeaxan-
thin and lutein) and prostate cancer (e.g. lycopene) (Fraser & Bramley, 2004).
In addition to their health benefits, carotenoids confer colour to many food
products. The hydrophobic and thermoliable nature of carotenoids prevents
separation by GC-MS. Alternatively, HPLC has become the method of choice
for carotenoid separation. Both reverse-phase Cig and normal phase silica
stationary phases have been used for this purpose. The mobile phases typ-
ically used are methanol or acetonitrile containing modifiers such as water
or ethyl acetate for reverse phase Cig systems, while normal-phase columns
use hexane based mobile phases with ethyl acetate as a modifier. In these in-
stances the systems are typically optimized to a specific class of carotenoids
for example, normal phase columns are mainly used for the separation of
xanthophylls. More recently Csy reverse-phase columns have been utilized
to profile a range of carotenoids with diverse polarities as well as numerous
other isoprenoids such as tocopherols. The Csy reverse-phase matrix is also
ideal for the separation of geometric isomers (Fraser et al., 2000).
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Modern mass spectrometry has been one of the principal contributing fac-
tors to the development of metabolite profiling, however the hydrophobic
nature, sensitivity to light, heat, oxygen, acid and in some cases alkali, pre-
cludes routine detection of carotenoids by MS due to poor and differential
ionization. The number of conjugated double bonds, the nature of the cyclic
end groups and oxygen moieties present in the carotenoid molecule give rise
to characteristic UV /VIS spectra. The ability of in-line photodiode array de-
tectors (PDA) to record absorbance simultaneously across the whole spectrum
makes them ideal for carotenoid identification. In addition, the use of electro-
chemical array detection is gaining ground exhibiting significantly increased
sensitivity for both hydrocarbon (B-carotene and a-carotene) and oxygenated
(lutein and zeaxanthin) carotenoids. Co-chromatography and comparison of
spectral characteristics with authentic standards enable conclusive identifi-
cation. Carotenoid standards can in some cases be purchased commercially.
It is however, often necessary to purify the compounds from known bio-
logical sources, and compare these to their properties documented in the
literature. Quantitation of carotenoids separated by HPLC can be achieved
by the construction of dose-response curves prepared from authentic stan-
dards. For accurate determination, it is advantageous to prepare a curve for
each carotenoid and record the chromatographic area at the Amax for each.
If an authentic standard is unavailable, a carotenoid with similar chromato-
graphic properties and Amax can be used. Non-endogenous carotenoids can
be used as internal standards and relative quantification can be performed.
This approach is not as accurate as the use of dose-response curves and re-
covery can be affected by the matrix. The internal standards are also useful
for the normalization of chromatographic retention times. HPLC coupled to
PDA detectors is the method of choice when analyzing carotenoid pigments,
which overcomes their lack of amenability to routine MS (Fraser et al., 2007b).
The use of C3y reverse phase columns means that a robust profiling method
can be used that will identify all pigments within the pathway in a simulta-
neous chromatographic run. Such approaches have become an ideal means
of evaluating changes occurring in a key class of metabolites, essential for
conferring quality attributes in foods and have been applied successfully to
the GM crops.

7.7.3 Evaluation of novel foodstuffs using metabolomic and
chemical fingerprinting

As described above the application of metabolite profiling to food qual-
ity typically involves focused analysis of specific classes of compounds.
This is not the objective when assessing substantial equivalence of novel
crops/foodstuffs. Fundamentally the techniques must be able to detect per-
turbations in metabolites that are unrelated by intuitive biological knowledge
related to intended manipulation. For such analysis metabolomic or chemical
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fingerprinting procedures utilizing GC-MS, NMR, MALDI-ToF/MS and DI-
MS have been evaluated.

Reports now exist where GM varieties of the food crops tomato (Le Gall
et al., 2003), potato (Defernez et al., 2004), pea (Charlton et al., 2004) and
wheat (Baker et al. 2006) have been assessed for substantial equivalence using
a variety of technologies (*H-NMR, GC-MS, DI-MS and MALDI-ToF/MS).
Among these techniques, "H-NMR has been used successfully with potato,
pea, tomato and wheat. In these studies less than 50 metabolites were identi-
fied and quantified. As outlined earlier, comparative to MS techniques, NMR
is less sensitive and has a low resolution, which limits detection of low abun-
dance metabolites. The hardware involved is also expensive and not routine
in public analyst laboratories. DI-MS (Catchpole et al., 2005) and MALDI-
ToF/MS (Fraser et al., 2007b) have been used to differentiate between GM
and non-GM potato and tomato varieties respectively. Potentially these pro-
cedures are likely to be used as fingerprinting approaches as identification
of m/z signals can be ambiguous without incorporation of chromatographic
behaviour into the analysis. In addition, quantification can also be affected
by ion-suppression if crude extracts are used.

GM tomato (Roessner-Tunali ef al., 2003), potato (Catchpole et al., 2005)
and wheat (Baker et al., 2006) varieties have all been differentiated from
their parent backgrounds and appropriate controls using GC-MS approaches
to determine chemical composition. To date the GC-MS analysis provides
the most comprehensive coverage of identified metabolites. The compounds
identified include sugars, sugar phosphates, organic acids, fatty acids, polyols
and some terpenoids, and in total about 120 metabolites can be identified
in one chromatographic separation. However, one of the most frustrating
aspects is the presence of numerous unknown chromatographic components
of which many are metabolites.

Traditionally when evaluating metabolomics data generated on novel
foods, multivariate principal component analysis is the method of data anal-
ysis routinely used. In virtually all cases the experimental approaches were
able to differentiate varieties using PCA scattered plots, clustering individ-
ually according to genotype. However, the difference between varieties (e.g.
GM and non-GM) was very small. In conclusion, these studies indicated that
the overall difference in metabolite composition resulting from the intended
manipulation was not greater than the transformation process solely.

More recently, a number of software solutions have been developed that
enables the changes in metabolites to be overlaid onto biochemical path-
ways (www.Biosynlab.com; Thimm, et al. 2004). In this way the sectors of
metabolism affected can be clearly differentiated. With the advent of more
Systems Biology based approaches the potential exists to integrate differ-
ent omics-based datasets for a given crop variety (Thimm et al., 2004)).
This will enable correlation analysis to be performed and eventually a more
predictive modelling approach developed for the assessment of substantial
equivalence.
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7.7.4 Metabolomics in the development and evaluation of
GM crops

Genetically modified (GM) crops have tremendous potential to improve the
quality of life and reduce environmental impact. For example GM technology
can generate crops that require less herbicide and pesticide intervention, re-
duce water and nutrient usage and contain multiple dietary acquired health
promoting chemicals. In the US, GM crops are now well established within
their agricultural system. However, the European consumer is presently not
prepared to accept foodstuffs produced by the technology, thus preventing
commercialization in Europe. The main concerns of GM crops relates to the
presence of foreign DNA, environmental/ecological implications (e.g. effect
on native species), potential unintended effects on chemical composition,
which could lead to elevated or novel toxins and allergenic material as well
as altered nutritional content. An alternative to GM breeding is the devel-
opment of genetically defined breeding populations in which new biodiver-
sity has been introduced. The utilizations of molecular markers with these
populations will speed-up conventional breeding and the transfer of QTLs
(Quantitative Trait Loci) to elite varieties. However, the regions of DNA in-
trogressed are presently large and this can result in gene drag and associated
detrimental traits that may have adverse effects on human health.

Presently, in order for novel foods GM or non-GM, to be accepted into the
market place, they must be considered substantially equivalent. The concept
of substantial equivalence works upon the characteristics of the novel crop
being comparable to an existing food /crop with a history of safe use. The ap-
proach has been developed in collaboration with international agencies such
as the Organization for Economic Co-ordination and Development (OECD;
Anon, 1993) and the United Nations World Health Organization/Food and
Agricultural Organization (FAO/WHO, 1991, 2000). The comparator used in
the case of GM material is usually the parent background to which genetic
manipulation has occurred. Typically three scenarios of substantial equiv-
alence can be considered; (i) the novel food is equivalent to an accepted
traditional foodstuff, in which case no further testing is needed, (ii) the novel
food is equivalent to the traditional counterpart except for intended differ-
ences, in this case safety criteria will be focused on these known differences
and (iii) the novel food is different in many respects and there are no known
counterparts, in this instance extensive safety assessment will be carried out.

Traditionally the degrees of substantial equivalence are based upon tar-
geted compositional chemical analysis and include major nutrients and tox-
icants. Concerns have been raised with respect to the targeted (and limited)
nature of the chemical analyses used in these evaluations. It is clear that such
technologies cannot take into account the possibility of unintended effects
resulting directly or indirectly from the action of the transgene inserted or its
effects at the biochemical level. Recently metabolite profiling/metabolomic
technologies have been evaluated and adopted within the risk assessment
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of novel foods as a means of evaluating unintended effects on the chemical
composition.

7.7.5 Non-targeted approaches and detection of
unintended effects

A fuller evaluation of the compositional variation of raw crop plant ma-
terials and downstream products will emerge through the development of
comparative metabolomics databases that can be expanded and evolved by
the international community. This information can be used to benchmark any
measured differences between a particular crop against the extent of ‘accept-
able’ variation within the framework of a history of safe use of the crop species
in question. There is an ongoing debate over the potential value of much
broader scale, more unbiased analytical approaches including metabolomics
in risk assessment, which, through the quantity of data they generate, may
help to (a) identify effects which could stimulate the need for further risk
assessment and (b) reduce the level of uncertainty that unintended effects
have occurred. Most of this debate has clearly focused on GM crops but it is
already clear that significant natural variation exists within crop gene pools,
accentuated by interactions with the prevailing environment.

Metabolomics clearly has much to offer in developing new insights into
the regulation of plant metabolism but it must be recognized that the tech-
nology has limitations. The plant kingdom may contain between 90,000 and
200,000 metabolites (Dixon & Strack, 2003), although, for a single species, the
number may approach a few thousand (the estimate for Arabidopsis is about
5000). Thus full coverage of the metabolome is a real challenge. Data analysis
is also challenging as the technologies produce vast datasets. Various data
mining approaches are used, e.g. cluster analysis and PCA, to assist the re-
searcher identify non-random patterns that can be further explored (possibly
using targeted analytical approaches). A number of initiatives have looked
towards developing standards for metabolomics data in addition to a range
of ology-specific and general data formats (see Hardy & Taylor, 2007;
D , 2009 and references therein).

7.8 The future importance of metabolomics in
crop research

Metabolomics has emerged to become one of the key tools in all areas of
biology, essentially starting with phytochemists then latterly into human dis-
eases, nutrition, drug discovery etc. More recently, as the ability to sequence
plant and crop genomes via next generation sequencing has almost become
common place and relatively inexpensive (Varshney et al., 2009), the require-
ment to correlate this data with detailed and quantitative pheno(chemo)typic
data has become a requirement and has seen a significant ramping up of
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complementary ‘omics efforts under the banner of systems biology to bridge
the genotype-to-phenotype gap (Fiehn, 2002).

Already we are beginning to see these highly detailed complementary
analytical approaches being applied in our most common crops such as potato
(Lehesranta et al., 2005; Shepherd et al., 2006; Lehesranta et al., 2006; van Dijk
et al., 2009; Shepherd et al., 2010), tomato (Hoekenga, 2008; Matsukura et al.,
2008; Barone et al.,2009; Gavai et al., 2009; Plechakova et al. 2009; Sanchez Pérez
etal.,2009), tomato (Hoekenga, 2008; Matsukura et al., 2008; Barone et al., 2009;
Gavai et al., 2009; Plechakova et al. 2009; Sanchez Pérez et al., 2009) and to a
lesser degree soft fruit such as raspberry (2004 2004, 2009; Mazzitelli et al.,
2007; Stewart et al., 2007; McDougall et al. 2008). The crops addressed by this
unified approach will undoubtedly broaden as the approaches become more
common place and the technologies, and associated data handling software,
more accessible.

Metabolomics per se also has a key position in addressing the current and
future problems surrounding crop and food production: safety, (enhanced)
nutritive value sustainability, food security and climate change. Many of these
issues are of general importance and ideally, require broad, multidisciplinary
efforts to tackle them. Thankfully, several are already being addressed under
international, multi-partner projects. For, example the recently completed
projects NOFORISK (Quantitative risk assessment strategies for novel foods;
http:/ /www.scri.ac.uk/research/ppfq/foodquality /foodsafety /noforisk)
and SAFEFOODS (Promoting Food Safety through a New Integrated Risk
Analysis Approach for Foods; http://www.safefoods.nl), both EU-FP6
funded projects, had metabolomics at their core as high throughput and
detailed analytical approaches to be assessed as a platform for inclusion as
part of a risk assessment process for novel foods (in these cases GMO). The
metabolomics effort developed as part of SAFEFOODS was utilized to assist
another FP6 project QualityLowInputFood (http://www.glif.org/) whose
aim was to improve quality, ensure safety and reduce cost along the organic
and ‘low input’ food supply chains through research thereby initiating the
utility of metabolomics in agricultural sustainability research.

More recently the projects DEVELONUTRI (Development of High
Throughput Approaches to Optimise the Nutritional Value of Crops
and Crop-Based Foods; http://www.develonutri.info) and META-PHOR
(Metabolomic Technology Applications for Plants, Health and Out-
reach; http://www.meta-phor.eu/), sister EU-FP6 funded projects, have
metabolomics as their primary approach to look at a number of issues in
specific crops. META-PHOR focuses on developing innovative metabolite
profiling and identification technologies for the detailed characterization of
broccoli, rice and melon. DEVELONUTRI, meanwhile is focused on employ-
ing state-of-the-art and emergent metabolomic technologies to potato, tomato
and wheat (durum and bread) crop generation and the assessment that the
post-harvest processing chain has on nutritive value and the global metabo-
lite pool. Such projects shall prove essential in helping us move forward and
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jump to the next level and such technology-driven project clearly can touch
on all the hot topics such as food security, nutritive value and food safety.

Of the newer crop metabolomics projects, the EU Interreg IVb project Cli-
maFruit (Futureproofing the North Sea Berry Industry; www.climafruit.com)
is addressing what is seen to be a key issue for the North Sea berry indus-
try: climate change and sustainability. Within this project, metabolomics will
be used to elucidate the impact of specific elements of climate change ([CO,]
and temperature) and sustainability (water and nutrient use efficiency, carbon
foot print, etc.) on fruit development and quality with a view to feeding this
back, with a matched functional genomics effort, into breeding programmes.

In conclusion, metabolomics evidently has gained its place at the cen-
tre of crop and food research. As our knowledge of, and ability to apply,
metabolomics in these areas increases, the utility of the technology will in-
crease accordingly and we will see it become one of the ‘must have’ technolo-
gies for crops and food research in the near future.
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