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‘‘Omics” technologies provide coverage of gene, protein and metabolite analysis that is unsurpassed com-
pared with traditional targeted approaches. There are a growing number of examples indicating that pro-
filing approaches can be used to expose significant sources of variation in the composition of crop and
model plants caused by genetic background, breeding method, growing environment (site, season), geno-
type � environment interactions and crop cultural practices to name but a few. Whilst breeders have long
been aware of such variation from tried and tested targeted analytical approaches, the broad-scale, so
called ‘‘unbiased‘‘ analysis of the metabolome now possible, offers a major upside to our understanding
of the true extent of variation in a plethora of metabolites relevant to human and animal health and
nutrition. Metabolomics is helping to provide targets for plant breeding by linking gene expression,
and allelic variation to variation in metabolite complement (functional genomics), and is also being
deployed to better assess the potential impacts of climate change and reduced input agricultural systems
on crop composition. This review will provide examples of the factors driving variation in the metabol-
omes of crop species.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Plant breeding in its many guises, be it conventional, marker as-
sisted, or genetically modified (GM) drives the production of new
varieties required to compete successfully in the complex global
agricultural marketplace, with increasing emphasis on the use of
early landrace varieties and wild species to introduce the new
genes and alleles required to improve pest and disease resistance,
quality and yield (Fernie et al., 2006 and references therein). There
are also growing demands for germplasm adapted to deal with
changing climates and which are effective under a range of cultural
practices including low input and organic systems. In addition,
there are clearly demands from the market for foods with higher
nutritional value and which do not compromise high safety stan-
dards present in the current food chain.

Targeted analysis of specific key compounds, using well estab-
lished and validated protocols, has provided the cornerstone for
assessing the nutritional value and safety of cultivated crop spe-
cies. A significant body of data on the targeted analysis of GM crop
composition has already been developed (see International Life
Science Institute (ILSI) at http://www.cropcomposition.org; Ridley
ll rights reserved.

vies).
et al., 2004). Such information provides a benchmark against which
the new generations of crops and advances in production systems
can be evaluated. Genetic background, growing environment (geo-
graphical, seasonal) and crop management practices are major fac-
tors underpinning this variation. Genetic changes induced by
selective breeding are such that major domesticated crops are typ-
ically represented by hundreds, even thousands, of unique culti-
vars specialised for production in a wide variety of geographic
regions. Thus databases will be representative and never complete.
2. Non-targeted approaches and detection of unintended effects

A fuller evaluation of the compositional variation of raw agri-
cultural commodities and downstream products will emerge
through the development of comparative metabolomics databases
that can be expanded and modified by the international commu-
nity. This information can be used to benchmark any measured dif-
ferences between a particular crop against the extent of
‘‘acceptable” variation within the framework of a history of safe
use of the crop species in question. There is an ongoing debate over
the potential value of much broader scale, more unbiased analyti-
cal approaches including metabolomics in risk assessment which,
through the quantity of data they generate, may help to identify
effects which could stimulate the need for further risk assessment,
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and reduce the level of uncertainty that unintended effects have
occurred. Most of this debate has clearly focused on GM crops
but it is already clear from metabolomic analyses that significant
natural variation exists within crop gene pools, accentuated by
interactions with the prevailing environment.

Metabolomics clearly has much to offer in developing new in-
sights into the regulation of plant metabolism but it must be recog-
nised that the technology has limitations. The plant kingdom may
contain between 90,000 and 200,000 metabolites (Dixon and
Strack, 2003), although for a single species the number may ap-
proach a few thousand (the estimate for Arabidopsis is ca. 5000).
Thus full coverage of the metabolome is a real challenge. Analysis
is also challenging as the technology produces vast amounts of
data. Various data mining approaches are being used to analyze
these large data sets (e.g. cluster analysis, principal component
analysis [PCA]). PCA can be used to assist the researcher in identi-
fying non-random patterns that can be further explored (possibly
using targeted analytical approaches). A number of initiatives have
looked towards developing standards for metabolomics data in
addition to a range of technology-specific and general data formats
(see Hardy and Taylor, 2007; Davies, 2009 and references therein).

This paper reviews the use of metabolomics to assess natural
variation and also focuses on some case studies in more detail.
The review includes reference to the use of metabolomics to com-
pare GM crops with their conventional comparators as this is an
important debating point. The review will not cover the various
metabolomic technologies and the reader is referred to Schauer
and Fernie (2006), Hall (2006) and Davies (2009).
3. General observations – the UK Food Standards Agency (FSA)
GO2 programme

Probably one of the largest publically funded programmes com-
missioned to assess the potential use of ‘‘omics” approaches in
comparative analysis and their relevance to risk assessment was
the GO2 programmed launched by the UK Food Standards Agency.
The full report can be found at http://www.food.gov.uk/multime-
dia/pdfs/g02report. This three-year research programme was
launched in September 2001, with funding of £5.5 M provided by
the UK Treasury Department, focusing on the applicability and
practicality of a variety of existing and emerging techniques for
the safety assessment procedures for the next generation of GM
foods. The programme examined the use of transcriptomic, proteo-
mic and metabolomic techniques in a number of different plant
species including potato, barley, tomato and Arabidopsis.

With regard to metabolomics, Nuclear Magnetic Resonance
(NMR) spectroscopy proved to be a rapid, reproducible and robust
technique for metabolite profiling and detected one unidentified,
possibly novel, metabolite in barley which was increased in all five
transgenic lines studied. However, there were fewer overall
changes seen in the metabolome of GM wheat than of GM barley.
It was considered unlikely that this level of difference would be de-
tected with targeted analytical methods. One research group iden-
tified a number of metabolites in non-GM potatoes that had not
previously been described in crop plants, indicating the potential
value of untargeted metabolomic analysis (Parr et al., 2005). Met-
abolomics publications arising from the FSA projects observed that
the differences between conventional varieties were always signif-
icantly greater than the differences between the wild-types and
their respective transgenics (Defernez et al., 2004; Catchpole
et al., 2005); this despite the fact that some GM lines had very dis-
tinct morphological phenotypes.

The review concluded that methods developed in this extensive
research programme were successful at detecting unintended
changes resulting from transgene insertion into plants However,
the vast majority of these changes were small (ca. 2-fold or less)
with evidence provided that at least some of these changes may
be due to somaclonal variation resulting from the in vitro manipu-
lation of plants rather than the presence of an inserted transgene
per se. It is also clear that differences in the metabolome between
plants grown in different environments, and even different culti-
vars of the same species grown in the same environment, were
of greater significance and variation than the effect of the trans-
gene itself. However, the studies focused on transgenic plants with
specific genes and modified traits, and one cannot generalise about
the potential for unintended effects in all GM organisms (GMOs). A
case-by-case approach remains pragmatic.
4. Specific case studies

4.1. Maize

Targeted studies of maize kernels have demonstrated the im-
pact of factors such as developmental stage (Seebauer et al.,
2004), environment and farming practice (Harrigan et al.,
2007a,b), and genetic background and growing seasons (Reynolds
et al., 2005; Ridley et al., 2004) on the natural variability of metab-
olites. In addition to the targeted analyses of individual com-
pounds, metabolite profiling techniques have been shown to be
useful tools for the investigation of complex plant matrices (Loz-
ovaya et al., 2006; Castro and Manetti, 2007). More recently, the
EU project SAFEFOODS (http://www.safefoods.nl) has used maize
as one target species to assess the use of metabolomics to assess
the major drivers of natural variation. Some of the data arising
from this project are provided below.
4.1.1. Differentiation of maize varieties
Metabolites from four maize cultivars (cv. Flavi, Lukas, Pontos

and Shorty), grown over three seasons (2004, 2005 and 2006) at
one location (Frankendorf) in Bavaria (Germany), were profiled
using the methodology described by Röhlig et al. (2009). This pro-
cedure results in four fractions containing fatty acid methyl esters
and hydrocarbons (fraction I), free fatty acids, alcohols and sterols
(fraction II), sugars and sugar alcohols (fraction III), acids, amino
acids and amines (fraction IV). Metabolite profiling data from the
combined four fractions I–IV obtained for the four cultivars were
statistically assessed via PCA to determine the major sources of
variation within the dataset (Fig. 1). On the basis of the data from
all four fractions, each genotype could be clearly distinguished in
2004 (Fig. 1A) but in subsequent years cv. Pontos was not easily
discriminated (Fig. 1B and C). The combined data from all three
growing seasons (2004–2006) did not allow a separation of culti-
vars (Fig. 1D) but revealed a clear clustering according to growing
season (Fig. 1E). The data therefore indicate a more pronounced
impact of growing season than of genetic background on the natu-
ral variability of metabolites.

The metabolic variability, expressed by the number of statisti-
cally significant (p < 0.05) differences in metabolite levels between
the four cultivars (20% in 2004, 15% in 2005 and 25% in 2006) was
in the same order of magnitude as observed for low phytic acid
maize mutants. Application of a Gas Chromatography-Mass Spec-
trometry (GC-MS) metabolite profiling approach revealed 11–30%
of the detected compounds to be statistically significantly different
(p < 0.05) between wild-type maize and low phytic acid maize mu-
tants (Hazebroek et al., 2007). A study investigating the nutritional
and metabolic profiles of different maize hybrids via targeted anal-
yses of 47 analytes revealed statistically significant differences
ranging from 33% to 47% of total comparisons (Reynolds et al.,
2005).

http://www.food.gov.uk/multimedia/pdfs/g02report
http://www.food.gov.uk/multimedia/pdfs/g02report
http://www.safefoods.nl
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Fig. 1. Principal components analysis of metabolite profiling data from fractions I to IV in growing seasons 2004 (A), 2005 (B), 2006 (C) and from combined data of 2004–2006
(D and E) at farming location Frankendorf, Bavaria.
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4.1.2. Influence of growing location
Scores plots of principal component analyses of GC-MS metab-

olite data obtained for one maize variety (Amadeo) cultivated over
three consecutive years at four locations in Bavaria (Mittich, Reith,
Strassmoos and Thann) are shown in Fig. 2. In 2004 maize grown at
Thann
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Fig. 2. Principal components analysis of metabolite profiling data from fractions I to IV
2004–2006 (D) at the four locations Mittich, Reith, Strassmoos and Thann.
Strassmoos was easily separated from the other sites on the first
principal component (PC) with Mittich differentiated on the sec-
ond PC (Fig. 2A). In 2005 location Strassmoos was again clearly
separated from the other growing locations (Fig. 2B). However, in
2006 no obvious separation occurred for any of the sites
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(Fig. 2C). Combining data from all three growing seasons resulted
in an overlap of clusters with no clear differentiation due to either
location or growing season (Fig. 2D).

Peak-by-peak comparisons of GC-MS data and an analysis of
variance between the different growing locations performed for
one cultivar (Amadeo) showed fewer statistically significant differ-
ences (p < 0.05) than statistical assessment of the four cultivars
grown at one farming location (Fig. 1) which suggests a more pro-
nounced impact of genetic background than of the environment.
Similarly, it has been shown that 36% of 58 metabolites differ be-
tween maize inbreds crossed against two different testers and that
48% of these statistically significant differences were due to the
influence of the location (Harrigan et al., 2007a). Reynolds et al.
(2005) also showed that variation caused by environmental fac-
tors, e.g. site and year, is dependent on the genotype grown. The
interaction between genotype and environmental (G � E) is clearly
an important driver of compositional variation.

4.1.3. GM compared with non-GM
Current safety assessment procedures developed for GM crops

are primarily based on a targeted compositional analysis of specific
safety and nutrition-related compounds (OECD, 1993; FAO/WHO,
2000). To date this has proven to be a valid approach for risk
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Fig. 3. Principal components analysis of GC/MS metabolite profiling data obtained by tri
The material was grown at different environments in South Africa differing in locatio
Individual environments are highlighted in color in the context of all samples ( ). For P
assessment. On a case-by-case basis, non-targeted metabolite pro-
filing approaches can be used as an additional tool if they can really
help to reduce any uncertainty (see Davies, 2009 and references
therein). In such cases metabolite profiles of the GM should not
only be compared with the corresponding parental line, but should
also be assessed in the light of natural variability of metabolic pro-
files of conventional crop material (EFSA, 2006).

To assess the influence of genetic modification under different
environmental conditions, a GM maize line (Bt-maize) was grown
together with its near isogenic line at three locations in South Afri-
ca (Petit, Potchefstroom, Lichtenburg) in 2004. At Petit and Licht-
enburg, Roundup ready-maize was also grown together with the
Bt-maize and the isogenic line. In addition, the maize lines were
grown for two additional years (2005 and 2006) at Petit. Statistical
assessment (via PCA) of the metabolite profiling data from the
samples grown at the three locations in 2004 revealed clear sepa-
rations of the GM line(s) from the respective isogenic line at Pot-
chefstroom and Lichtenburg (Fig. 3). For the maize lines grown
over three years at Petit, a distinct separation of both GM lines
was observed for the location Petit in 2006; the separation of GM
lines from the isogenic maize line was less pronounced for this
location in 2004 and 2005. However, despite partly obvious differ-
ences between GM lines and isogenic maize determined for one
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location/year, no separations of the different maize lines were
detectable when combining the metabolite profiling data obtained
from GM lines and isogenic maize for all growing locations/years
(Fig. 3). This confirms that, at least in the case of the specific GMOs
analysed to date, the effect of environment (location, year) was
more pronounced than that of the genetic background (GM, non-
GM). With some next generation GMOs this situation may well
change.

Similar data have been presented for wheat where Baker et al.
(2006) showed that differences observed between GM and the con-
trol lines were generally within the same range as the differences
observed between the control lines grown on different sites and
in different years.

4.2. Rice (mutated, low phytate)

A range of crops (e.g. rice, maize, barley, wheat) have been
developed with lowered contents of the anti-nutrient phytic acid
(Raboy, 2007). Low phytic acid (lpa) crops have been produced
by genetic engineering (Shi et al., 2007) and by mutation breeding
through chemical mutagenesis (Wilcox, 2000) and c-irradiation
(Yuan et al., 2007). Low phytic acid crop mutants are typically se-
lected on the basis of their altered levels of inorganic phosphorous
(Pi). However, in addition to altered levels of phytic acid and Pi, the
induced mutations were shown to result in further metabolic
changes in these crops (Hitz et al., 2002; Frank et al., 2007, 2009).

Metabolomic analysis has been carried out on two lpa rice mu-
tants (Os-lpa-XS110-1 and Os-lpa-XS110-2), generated by c-irradi-
ation of the corresponding wild-type rice (Xiushui 110) and grown
at five field trials in China in 2005/2006. PCA of the polar fractions
III (sugars and sugar alcohols) and IV (acids, amino acids and
amines) are shown in Fig. 4. The mutant Os-lpa-XS110-1 is sepa-
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Table 1
Peak-based comparison of chromatograms obtained by metabolite profiling of wild-type Xi

Wild-type vs. mutant Field trial

Hainan Jiaxing Hangz

Totala Diff.b Total Diff. Total

XS110 vs. lpa-XS110-1 144 58 121 47 118
XS110 vs. lpa-XS110-2 128 32 107 21 107

a Number of peaks included for comparison in fractions I–IV (peak height > 1000 lV).
b Number of peaks statistically significant different between wild-type and mutant lin
c Number of peaks statistically significantly different between wild-type and mutant
rated consistently from the wild-type Xiushui 110 in all field trials
indicating a strong influence of the mutation on the polar metabo-
lite profiles in this mutant. Whilst the variance between the mu-
tant Os-lpa-XS110-2 and the wild-type is less pronounced, the
rice lines were well differentiated by growing location. Samples
grown at different locations, e.g. Hainan and Jiaxing (see marked
field trials in Fig. 4A and B), were clearly separated from each other
which confirms the influence of the environment-related biologi-
cal/natural variability of the metabolite spectrum in the rice
wild-types and the lpa mutants.

To identify the compositional differences only caused by the
mutations, a univariate analysis was performed. Results obtained
by the comparative univariate assessment of the lpa mutant and
the corresponding wild-type metabolites are shown in Table 1.
For the comparison of the wild-type Xiushui 110 and the lpa mu-
tants Os-lpa-XS110-1 and Os-lpa-XS110-2, on average, a total of
126 and 113 peaks were included for comparison of which 40%
and 26% were statistically significantly different in each field trial.
The percentages of statistically significant differences in metabo-
lites between the two lpa mutants and the wild-type for each field
trial are within the same order of magnitude as those determined
for comparable GC-based metabolite profiling studies on lpa mu-
tants of maize and soybean (Hazebroek et al., 2007; Frank et al.,
2009).

Results obtained by the comparative univariate assessment of
the rice lpa mutant and the corresponding wild-type metabolites
revealed that the vast majority of differences observed are related
to biological variability rather than to the mutation event. Only five
metabolites were consistently statistically different between Xiu-
shui 110 and Os-lpa-XS110-1 at all five field trials. The compounds
were identified as trimethylsilyl (TMS) derivatives of the methyl
pentadecanoate, myo-inositol, galactose and raffinose and phos-
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hou 1 Fuzhou Guangzhou Consistent diff.c

Diff. Total Diff. Total Diff.

50 135 51 111 48 5
28 121 44 101 24 2

e in fractions I–IV (p < 0.05).
line at all five analysed field trials where diff. = difference(s).
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phate. For Os-lpa-XS110-2, only the two TMS derivatives of phos-
phate and myo-inositol were significantly and consistently differ-
ent at the five field trials. These metabolites are related to the
biosynthetic pathways leading to phytic acid (Frank et al., 2007).

4.3. Potato

4.3.1. Genetic and phytochemical diversity in wild populations
The Scottish Crop Research Institute houses the Commonwealth

Potato Collection of 83 species and ca. 1600 accessions. This is a
valuable germplasm collection used to identify new sources of
genes for pest and disease resistance and quality traits. Wild Sola-
num species (73 accessions representing several taxonomic
groups) have been grown from seed and tubers and analysed using
metabolomics (Davies, 2006). Metabolomics (GC-MS) with data
analysed by PCA was able to separate group series Pinnatisecta
from the other taxonomic groups. The compounds driving the dif-
ference were both polar and non-polar metabolites. Metabolite fin-
gerprinting using Direct Infusion-Mass Spectrometry (DI-MS;
positive ion mode) was particularly effective in discriminating
taxonomic groups based on mass ions associated with specific
glycoalkaloids demissine, dehydro-demissine, commersonine,
a-tomatine, a-solanine and a-chaconine.

In a similar study, Dobson et al. (2008) used metabolomic ap-
proaches to analyse 29 genetically diverse potato cultivars and
landraces. Material included 27 tetraploid cultivars and landraces
– 20 � Solanum tuberosum sp. Tuberosum (16 with known intro-
gression of a variety of useful traits from a variety of wild species,
and 4 with no introgressed disease resistance), 7 Chilean landraces,
and 2 � diploid cultivars (S. phureja) using GC-MS. Metabolomics
was again able to discriminate between some (but not all) of the
germplasm.

Beckmann et al. (2007) used flow infusion electrospray
ionisation mass spectrometry (FIE-MS) and GC-MS, to assess com-
positional differences in potato cultivars (5 � S. tuberosum cultivars
– Agria, Desiree, Granola, Linda and Solara) with no prior genetic,
biochemical, or analytical chemistry data available. Data from the
FIE-MS suggested large differences existed between tubers of indi-
vidual cultivars. GC-MS analysis highlighted the fact that many of
the identified metabolites that contributed significantly to compo-
sitional differences between the cultivars were linked closely to
quality traits in potato tubers. For example, levels of the amino acids
isoleucine, tyrosine and phenylalanine were higher in certain
cultivars.

4.3.2. GM compared with non-GM
Roessner et al. (2001) used GC-MS analysis to phenotype previ-

ously characterised GM potato with altered sucrose catabolism.
Analysis of these lines allowed detection of 88 metabolites (61
known) including sugars, sugar alcohols, amino acids, organic acids
and several miscellaneous compounds. The majority of compounds
detected were increased in the transgenic lines compared with the
non-GM control, with metabolites associated with several meta-
bolic pathways increasing in tandem. Nine of the 88 compounds
in the GM tubers were below detectable limits in the wild-type
tubers.

Defernez et al. (2004) applied NMR and Liquid Chromatography
(LC)-MS protocols to GM potato lines with modifications in a range
of metabolic pathways. Whilst some differences were observed
between the GM lines and their controls, the largest differences oc-
curred between the non-GM parental material used to generate the
GM lines. This again emphases the importance of generic variabil-
ity irrespective of the presence or absence of transgenes.

Similarly, Catchpole et al. (2005) used GC-Time of Flight (ToF)-MS
and FIE-MS to provide a comprehensive comparison of total metab-
olites in field-grown potato genetically modified to induce fructan
biosynthesis. With the exception of the predicted intended effects
of up-regulated fructans and their expected derivatives, the levels
of metabolites detected were very similar in the GM and its control.
Importantly, metabolite levels in the GM lines fell within the range of
the five non-GM commercial cultivars used as reference material. In
fact, a major finding from the study was the large variation in the
metabolite profile between the five conventional cultivars.

Whilst assessing potato tubers for compositional changes
occurring after genetic modifications to different metabolic path-
ways, Parr et al. (2005) positively identified kukoamine A, and re-
lated phenolics compounds, in wild-type tubers. These were
subsequently detected in tomato (S. lycopersicon) and Nicotiana syl-
vestris, but were not detectable in Arabidopsis thaliana or Beta vul-
garis. This surprising discovery in a range of Solanaceous species,
including potato, provides evidence for the potential of non-tar-
geted analysis such as metabolomics in studying plant metabolites,
as such metabolites would not have been discovered using a tar-
geted approach. It also illustrates the gaps in our knowledge of
the true extent of natural variation.

4.4. Soft fruit

As with many crop species, soft fruit such as blueberry, rasp-
berry, strawberry and blackcurrant are characterised by a wide
range of metabolite classes which influence both quality and nutri-
tion value. These include sugars, acids, amino acids, carotenoids
and simple to complex polyphenolics to name but a few. Subclass
diversity is also evident with the polyphenol group including
anthocyanins, flavonols, (iso)flavones, flavanones, catechins, ellga-
itannins, cinnamates and hydroxyl benzoic acids and stillbenes
(Pietta et al., 2003; D’Archivio et al., 2007; Mullen et al., 2007).
These subclasses are further populated by differential levels and
patterns of polyphenol polymerisation, glycosylation, methylation
and acylation (Clifford, 2000; Reed et al., 2005; Xie and Dixon,
2005; Prior and Wu, 2006).

Metabolite diversity in soft fruit is accompanied by a signifi-
cantly broad and dynamic content range. For example, total antho-
cyanin content can be virtually undetectable in fruit such as banana
but can reach levels of 2–10 mg g�1 fresh weight in blackcurrant,
raspberry, blueberry, elderberry, and the lesser researched fruit
choke berry (Clifford, 2000). Similarly, other metabolites impacting
upon organolepsis (sugars and organic acids), nutrition (vitamins C
and A, etc.) and putative bioactive components (flavonoids) also
display similar levels of variation (Anon, 2003; Anon, 2009a,b).

The combination of all of the above factors have meant that
applications of true metabolomics (i.e. an untargeted study of
metabolite changes either by GC-MS, LC-MS, NMR, etc.) to fruit is
at a very early stage and have been limited to melon (Biais et al.,
2009, 2010), raspberry (McDougall et al., 2008; Stewart et al.,
2007) and strawberry (Fait et al., 2008). The approach taken by
Biais et al. (2009, 2010) focused on establishing within fruit spatial
variation in primary metabolites using a cross-comparative ap-
proach mining 1H NMR and GC-ToF-MS data for metabolite trends
at a spatial level using independently performed PCA and multi-
block hierarchical PCA (HPCA). . In general, the analytical systems
yielded similar spatial trends in metabolites. Confirmation of this
cross-comparability was revealed by a correlation-based super-
block HPCA for direct comparison of both analytical data sets.
The HPCA approach allowed different source data sets, with differ-
ent levels of sensitivity, to be confidently cross-compared thereby
extending the validity of the multi-analytical approach to meta-
bolomics. For melon at least this has been extended to determine
the underlying factors impacting upon shelf life and associated
spoilage via hypoxia related fermentation.

For strawberries, fruit development has been studied using a
combined GC-MS and UPLC-QTOF-MS (Fait et al., 2008) covering
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not only primary metabolites but also 105 secondary metabolites
including phenylpropanoid derivatives. This represents a signifi-
cant step beyond the state-of-the-art which has generally confined
itself to reporting on differences in specific chemical classes such
as flavonoids (Wang et al., 2003; Panico et al., 2009) and amino
acids (Keutgen and Pawelzik, 2008) due to genetic variation or
stress (Capocasa et al., 2008).

The application of metabolomics to study trait inheritance or
the influence of the environment on primary and secondary
changes is in its infancy with respect to soft fruit. This approach
has been hampered, at least with respect to fruit breeding, by the
sheer numbers of samples (distinct lines, replication) to be ana-
lysed in a standard segregating population. Methods to manage
this have been developed by Stewart et al. (2007) and McDougall
et al. (2008) who have truncated standard LC-MS to give a short
column method that is closer to DI-MS (S-DI-MS). Their study em-
ployed the same segregating raspberry population in two distinct
growing environments, one a low fertiliser site with minimal stan-
dard agronomic management and the other one classified as a high
health site with standard and regular inputs of fertiliser and agro-
nomic management. Mature fruit from these sites showed clear
differences in global metabolites, but year-on-year variation was
likely to be the key driver of metabolite variation observed be-
tween the sites. Interestingly, the PCA data for one of the years
was clearly differentiated with regard to the high and low input
systems the reason for which is most likely the dry weather expe-
rienced during fruit development and the differential soil water
retention capacities between sites.

When each site and season were analysed independently, segre-
gation of chemical classes within the breeding population was evi-
dent. A wide range of polyphenols were characterised but the most
evident amongst these were the following: cyanidin 3-glucoside,
cyanidin 3-sophoroside, cyanidin 3-glucosylrutinoside cyanidin
3-rutinoside, pelargonidin 3-sophoroside, pelargonidin 3-glucos-
ylrutinoside and quercetin acetylrutinoside. Analysis using PCA
indicated segregation within the population for the cyanidin-3-
sophoroside and cyanidin-3-rutinoside groups. This is informative
and means that the SC-DI-MS approach could facilitate a rapid
screen to identify progeny elevated in these compounds. This ap-
proach has subsequently been validated as a ‘‘near-quantitative”
approach, for (poly)phenolic metabolites at least, by McDougall
et al. (2008) and is currently being expanded to include strawberry
and blackcurrant populations with the aim of correlating meta-
bolomic data with sensory properties.
5. Conclusions

The characterisation of natural diversity in plant metabolites
using unbiased metabolite profiling approaches is already provid-
ing us with a deeper knowledge of food composition and its vari-
able nature both within and between species. This baseline
approach is already being applied in comparisons of GM crops with
non-GM comparators with a history of safe use, but metabolomic
data are not specifically requested in the risk assessment process
(at least not to date). Some argue that these unbiased analytical
techniques should indeed be applied to detect unintended effects
and reduce uncertainty. However, the potential use of these ap-
proaches in food safety and quality assessment need not be con-
fined to GMOs. This should however, be on a case-by-case basis.
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