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Abstract 

“Omics” technologies provide coverage of gene, protein and metabolite analysis that is 

unsurpassed compared with traditional targeted approaches.  There are a growing number of 

examples indicating that profiling approaches can be used to expose significant sources of 

variation in the composition of crop and model plants caused by genetic background, breeding 

method, growing environment (site, season), genotype X environment interactions and crop 

cultural practices to name but a few.  Whilst breeders have long been aware of such variation 

from tried and tested targeted analytical approaches, the broad-scale, so called “unbiased“ 

analysis of the metabolome now possible, offers a major upside to our understanding of the 

true extent of variation in a plethora of metabolites relevant to human and animal health and 

nutrition.  Metabolomics is helping to provide targets for plant breeding by linking gene 

expression, and allelic variation to variation in metabolite complement (functional genomics), 

and is also being deployed to better assess the potential impacts of climate change and 

reduced input agricultural systems on crop composition.  This review will provide examples 

of the factors driving variation in the metabolomes of crop species. 
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Introduction 

Plant breeding in its many guises, be it conventional, marker assisted, or genetically 

modified (GM) drives the production of new varieties required to compete successfully in the 

complex global agricultural marketplace, with increasing emphasis on the use of early 

landrace varieties and wild species to introduce the new genes and alleles required to improve 

pest and disease resistance, quality and yield (Fernie et al., 2006 and references therein).  

There are also growing demands for germplasm adapted to deal with changing climates and 

which are effective under a range of cultural practices including low input and organic 

systems.  In addition, there are clearly demands from the market for foods with higher 

nutritional value and which do not compromise high safety standards present in the current 

food chain. 

Targeted analysis of specific key compounds, using well established and validated 

protocols, has provided the cornerstone for assessing the nutritional value and safety of 

cultivated crop species.  Thus we have accumulated a significant body of data on natural 

variation in nutrients and anti-nutrient contents for crops and cultivars with a history of safe 

use (see International Life Science Institute (ILSI) at www.cropcomposition.org; Ridley et al., 

2004).  Such information provides a benchmark against which the new generations of crops 

and advances in production systems can be evaluated.  Genetic background, growing 

environment (geographical, seasonal) and crop management practices are major factors 

underpinning this variation.  Genetic changes induced by selective breeding are such that 

major domesticated crops are typically represented by hundreds, even thousands, of unique 

cultivars specialised for production in a wide variety of geographic regions.  Thus databases 

will be representative and never complete. 

 

Non-Targeted Approaches and Detection of Unintended Effects 
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A fuller evaluation of the compositional variation of raw agricultural commodities and 

downstream products will emerge through the development of comparative metabolomics 

databases which can be expanded and modified by the international community.  This 

information can be used to benchmark any measured differences between a particular crop 

against the extent of "acceptable" variation within the framework of a history of safe use 

of the crop species in question.  There is an ongoing debate over the potential value of much 

broader scale, more unbiased analytical approaches including metabolomics in risk 

assessment which, through the quantity of data they generate, may help to identify effects 

which could stimulate the need for further risk assessment, and reduce the level of uncertainty 

that unintended effects have occurred.  Most of this debate has clearly focused on GM crops 

but it is already clear from metabolomic analyses that significant natural variation exists 

within crop gene pools, accentuated by interactions with the prevailing environment. 

Metabolomics clearly has much to offer in developing new insights into the regulation of 

plant metabolism but it must be recognised that the technology has limitations.  The plant 

kingdom may contain between 90,000 and 200,000 metabolites (Dixon and Strack, 2003), 

although for a single species the number may approach a few thousand (the estimate for 

Arabidopsis is ca. 5000).  Thus full coverage of the metabolome is a real challenge.  Analysis 

is also challenging as the technology produces vast amounts of data.  Various data mining 

approaches are being used to analyze these large data sets (e.g. cluster analysis, principal 

component analysis [PCA]).  PCA can be used to assist the researcher in identifying non-

random patterns that can be further explored (possibly using targets analytical approaches).  A 

number of initiatives have looked towards developing standards for metabolomics data in 

addition to a range of technology-specific and general data formats (see Hardy and Taylor, 

2007; Davies, 2010 and references therein). 

This paper reviews the use of metabolomics to assess natural variation and also focuses on 

some case studies in more detail.  The review includes reference to the use of metabolomics 
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to compare GM crops with their conventional comparators as this is an important debating 

point for the conference.  The review will not cover the various metabolomic technologies 

and the reader is referred to Schauer and Fernie (2006), Hall (2006) and Davies (2009). 

 

General Observations - The UK Food Standards Agency GO2 Programme 

Probably one of the largest publically funded programmes commissioned to assess the 

potential use of “omics” approaches in comparative analysis and their relevance to risk 

assessment was the GO2 programmed launched by the UK Food Standards Agency.  The full 

report can be found at http://www.food.gov.uk/multimedia/pdfs/g02report.  This three-year 

research programme was launched in September 2001, with funding of £5.5M provided by 

the UK Treasury Department, focusing on the applicability and practicality of a variety of 

existing and emerging techniques for the safety assessment procedures for the next generation 

of GM foods.  The programme examined the use of transcriptomic, proteomic and 

metabolomic techniques in a number of different plant species including potato, barley, 

tomato and Arabidopsis. 

With regard to metabolomics, Nuclear Magnetic Resonance (NMR) spectroscopy proved 

to be a rapid, reproducible and robust technique for metabolite profiling and detected one 

unidentified, possibly novel, metabolite in barley which was increased in all 5 transgenic lines 

studied.  However, there were fewer overall changes seen in the metabolome of GM wheat 

than of GM barley, possibly due to barley having a diploid genome, whereas wheat is 

hexaploid (i.e. the more genome copies present in a plant the more likely it is that other alleles 

compensate).  It was considered unlikely that this level of difference would be detected with 

targeted analytical methods.  One research group identified a number of metabolites in non-

GM potatoes that had not previously been described in crop plants, indicating the potential 

value of untargeted metabolomic analysis (Parr et al., 2005).  Metabolomics publications 

arising from the FSA projects observed that the differences between standard varieties were 
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always significantly greater than the differences between the wild-types and their respective 

transgenics (Defernez et al., 2004; Catchpole et al., 2005); this despite the fact that some GM 

lines had very distinct morphological phenotypes. 

The review concluded that methods developed in this extensive research programme were 

successful at detecting unintended changes resulting from transgene insertion into plants 

However, the vast majority of these changes were small (ca. 2-fold or less) with evidence 

provided that at least some of these changes may be due to somaclonal variation resulting 

from the in vitro manipulation of plants rather than the presence of an inserted transgene per 

se.  It is also clear that differences in the metabolome between plants grown in different 

environments, and even different cultivars of the same species grown in the same 

environment, were often greater than the effect of the transgene itself.  However, the studies 

focused on transgenic plants with specific genes and modified traits, and one cannot 

generalise about the potential for unintended effects in all GM organisms (GMOs).  A case-

by-case approach remains pragmatic. 

 

Specific Case Studies 

 

1. Maize 

Targeted studies of maize kernels have demonstrated the impact of factors such as 

developmental stage (Seebauer et al., 2004), environment and farming practice (Harrigan et 

al., 2007a,b), and genetic background and growing seasons (Reynolds et al., 2005; Ridley et 

al., 2004) on the natural variability of  metabolites. In addition to the targeted analyses of 

individual compounds, metabolite profiling techniques have been shown to be useful tools for 

the investigation of complex plant matrices (Lozovaya et al., 2006; Castro and Manetti, 

2007).  More recently, the EU project SAFEFOODS (www.safefoods.nl) has used maize as 
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one target species to assess the use of metabolomics to assess the major drivers of natural 

variation.  Some of the data arising from this project are provided below. 

 

1.1 Differentiation of Maize Varieties 

Metabolites from four maize cultivars (cv. Flavi, Lukas, Pontos and Shorty), grown over 

three seasons (2004, 2005 and 2006) at one location (Frankendorf) in Bavaria (Germany), 

were profiled using methodology described by Röhlig et al. (2009).  This procedure results in 

four fractions containing fatty acid methyl esters and hydrocarbons (fraction I), free fatty 

acids, alcohols and sterols (fraction II), sugars and sugar alcohols (fraction III), acids, amino 

acids and amines (fraction IV).  Metabolite profiling data from the combined four fractions I-

IV obtained for the four cultivars were statistically assessed via PCA to determine the major 

sources of variation within the dataset (Figure 1).  On the basis of the data from all four 

fractions, each genotype could be clearly distinguished in 2004 (Figure 1A) but in subsequent 

years cv. Pontos was not easily discriminated (Figures 1B and 1C).  The combined data from 

all three growing seasons (2004-2006) did not allow a separation of cultivars (Figure 1D) but 

revealed a clear clustering according to growing season (Figure 1E).  The data therefore 

indicate a more pronounced impact of growing season than of genetic background on the 

natural variability of metabolites. 

The metabolic variability, expressed by the number of statistically significant (p < 0.05) 

differences in metabolite levels between the four cultivars (20% in 2004, 15% in 2005 and 

25% in 2006) was in the same order of magnitude as observed for low phytic acid maize 

mutants.  Application of a Gas Chromatography-Mass Spectrometry (GC-MS) metabolite 

profiling approach revealed 11% to 30 % of the detected compounds to be statistically 

significantly different (p < 0.05) between wild-type maize and low phytic acid maize mutants 

(Hazebroek et al., 2007).  A study investigating the nutritional and metabolic profiles of 
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different maize hybrids via targeted analyses of 47 analytes revealed statistically significant 

differences ranging from 33% to 47% of total comparisons (Reynolds et al., 2005).  

 

1.2 Influence of Growing Location 

Scores plots of principal component analyses of GC-MS metabolite data obtained for one 

maize variety (Amadeo) cultivated over three consecutive years at four locations in Bavaria 

(Mittich, Reith, Strassmoos and Thann) are shown in Figure 2.  In 2004 maize grown at 

Strassmoos was easily separated from the other sites on the first principal component (PC) 

with Mittich differentiated on the second PC (Figure 2A).  In 2005 location Strassmoos was 

again clearly separated from the other growing locations (Figure 2B).  However, in 2006 no 

obvious separation occurred for any of the sites (Figure 2C).  Combining data from all three 

growing seasons resulted in an overlap of clusters with no clear differentiation due to either 

location or growing season (Figure 2D). 

Peak-by-peak comparisons of GC-MS data and an analysis of variance between the 

different growing locations performed for one cultivar (Amadeo) showed less statistically 

significant differences (p < 0.05) than statistical assessment of the four cultivars grown at one 

farming location (Figure 1) which suggests a more pronounced impact of genetic background 

than of the environment.  However, it has been shown that variation caused by environmental 

factors, e.g. site location, is dependent on the genotype grown (Reynolds et al., 2005).  The 

interaction between genetic and environmental background (G X E) is clearly an important 

consideration.  In a study investigating this interaction, 36 % of 58 metabolites differed 

statistically significantly (p < 0.05) between maize inbreds crossed against two different 

testers, and 48 % of statistically significant differences were due to the influence of the 

location (Harrigan et al., 2007a). 

 

1.3 GM Compared With Non-GM  
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Current safety assessment procedures developed for GM crops are primarily based on a 

targeted compositional analysis of specific safety and nutrition-related compounds (OECD, 

1993; FAO/WHO, 2000).  Non-targeted metabolite profiling approaches could represent an 

additional tool to be used in the risk assessment of GM crops (see Davies 2009 and references 

therein).  In such cases metabolite profiles of the GM should not only be compared with the 

corresponding parental line, but should also be assessed in the light of natural variability of 

metabolic profiles of conventional crop material (see EFSA guidance document). 

To assess the influence of genetic modification under different environmental conditions, 

a GM maize line (Bt-maize) was grown together with its near isogenic line at three locations 

in South Africa (Petit, Potchefstroom, Lichtenburg) in 2004.  At Petit and Lichtenburg, 

Roundup ready-maize was also grown together with the Bt-maize and the isogenic line.  In 

addition, the maize lines were grown for two additional years (2005 and 2006) at Petit.  

Statistical assessment (via PCA) of the metabolite profiling data from the samples grown at 

the three locations in 2004 revealed clear separations of the GM line(s) from the respective 

isogenic line at Potchefstroom and Lichtenburg (Figure 3).  For the maize lines grown over 

three years at Petit, a distinct separation of both GM lines was observed for the location Petit 

in 2006; the separation of GM lines from the isogenic maize line was less pronounced for this 

location in 2004 and 2005.  However, despite partly obvious differences between GM lines 

and isogenic maize determined for one location / year, no separations of the different maize 

lines were detectable when combining the metabolite profiling data obtained from GM lines 

and isogenic maize for all growing locations/years (Figure 3).  This confirms that, at least in 

the case of the specific GMOs analysed, the effect of environment (location, year) was more 

pronounced than that of the genetic background (GM, non-GM). 

Similar data have been presented for wheat where Baker et al (2006) showed that 

differences observed between GM and the control lines were generally within the same range 
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as the differences observed between the control lines grown on different sites and in different 

years. 

 

2. Rice (Mutated, Low Phytate) 

A range of crops (e.g. rice, maize, barley, wheat) have been developed with lowered 

contents of the anti-nutrient phytic acid (Raboy, 2007).  Low phytic acid (lpa) crops have 

been produced by genetic engineering (Shi et al., 2007) and by mutation breeding through 

chemical mutagenesis (Wilcox et al., 2000) and γ-irradiation (Yuan et al., 2007).  Low phytic 

acid crop mutants are typically selected on the basis of their altered levels of inorganic 

phosphorous (Pi).  However, in addition to altered levels of phytic acid and Pi, the induced 

mutations were shown to result in further metabolic changes in these crops (Hitz et al., 2002; 

Frank et al., 2007, 2009). 

Metabolomic analysis has been carried out on two lpa rice mutants (Os-lpa-XS110-1 and 

Os-lpa-XS110-2), generated by γ-irradiation of the corresponding wild-type rice (Xiushui 

110) and grown at five field trials in China in 2005/2006.  PCA of the polar fractions III 

(sugars and sugar alcohols) and IV (acids, amino acids and amines) are shown in Figure 4.  

The mutant Os-lpa-XS110-1 is separated consistently from the wild-type Xiushui 110 in all 

field trials indicating a strong influence of the mutation on the polar metabolite profiles in this 

mutant.  Whilst the variance between the mutant Os-lpa-XS110-2 and the wild-type is less 

pronounced, the rice lines were well differentiated by growing location.  Samples grown at 

different locations, e.g. Hainan and Jiaxing, were clearly separated from each other which 

confirms the influence of the environment-related biological / natural variability of the 

metabolite spectrum in the rice wild-types and the lpa mutants. 

To identify the compositional differences only caused by the mutations, a univariate 

analysis was performed.  Results obtained by the comparative univariate assessment of the lpa 

mutant and the corresponding wild-type metabolites are shown in Table 1.  For the 
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comparison of the wild-type Xiushui 110 and the lpa mutants Os-lpa-XS110-1 and Os-lpa-

XS110-2, on average, a total of 126 and 113 peaks were included for comparison of which 

40% and 26% were statistically significantly different in each field trial.  The percentages of 

statistically significant differences in metabolites between the two lpa mutants and the wild-

type for each field trial are within the same order of magnitude as those determined for 

comparable GC-based metabolite profiling studies on lpa mutants of maize and soybean 

(Hazebroek et al., 2007; Frank et al., 2009). 

Results obtained by the comparative univariate assessment of the rice lpa mutant and the 

corresponding wild-type metabolites revealed that the vast majority of differences observed 

are  related to biological variability rather than to the mutation event.  Only five metabolites 

were consistently statistically different between Xiushui 110 and Os-lpa-XS110-1 at all five 

field trials.  The compounds were identified as trimethylsilyl (TMS) derivatives of the methyl 

pentadecanoate, myo-inositol, galactose and raffinose and phosphate.  For Os-lpa-XS110-2, 

only the two TMS derivatives of phosphate and myo-inositol were significantly and 

consistently different at the five field trials.  These metabolites are related to the biosynthetic 

pathways leading to phytic acid (Frank et al., 2007). 

 

3. Potato 

3.1 Genetic and Phytochemical Diversity in Wild Populations 

The Scottish Crop Research Institute houses the Commonwealth Potato Collection of 83 

species and ca. 1600 accessions.  This is a valuable germplasm collection used to identify 

new sources of genes for pest and disease resistance and quality traits.  Wild Solanum species 

(73 accessions representing several taxonomic groups) have been grown from seed and tubers 

and analysed using metabolomics (Davies, 2006).  Metabolomics (GC-MS) with data 

analysed by PCA was able to separate group series Pinnatisecta from the other taxonomic 

groups.  The compounds driving the difference were both polar and non-polar metabolites.  
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Metabolite fingerprinting using Direct Infusion-Mass Spectrometry (DI-MS; positive ion 

mode) was particularly effective in discriminating taxonomic groups based on mass ions 

associated with specific glycoalkaloids demissine, dehydro-demissine commersonine α-

tomatine, α-solanine and α-chaconine.  

In a similar study Dobson et al (2008) used metabolomic approaches to analyse 29 

genetically diverse potato cultivars and landraces.  Material included 27 tetraploid cultivars 

and landraces - 20 x Solanum tuberosum ssp. Tuberosum (16 with known introgression of a 

variety of useful traits from a variety of wild species, and 4 with no introgressed disease 

resistance), 7 Chilean landraces, and 2 x diploid cultivars (Solanum phureja) using GC-MS.  

Metabolomics was again able to discriminate between some (but not all) of the germplasm. 

Beckmann et al (2007) used flow infusion electrospray ionization mass spectrometry 

(FIE-MS) and GC-MS, to assess compositional differences in potato cultivars (5 x S. 

tuberosum cultivars – Agria, Desiree, Granola, Linda and Solara) with no prior genetic, 

biochemical, or analytical chemistry data available.  Data from the FIE-MS suggested large 

differences existed between tubers of individual cultivars.  GC-MS analysis highlighted the 

fact that many of the identified metabolites that contributed significantly to compositional 

differences between the cultivars were linked closely to quality traits in potato tubers.  For 

example, levels of the amino acids isoleucine, tyrosine and phenylalanine were higher in 

certain cultivars. 

 

3.2 GM Compared With Non-GM 

Roessner et al (2001) used GC-MS analysis to phenotype previously characterised GM 

potato with altered sucrose catabolism.  Analysis of these lines allowed detection of 88 

metabolites (61 known) including sugars, sugar alcohols, amino acids, organic acids and 

several miscellaneous compounds.  The majority of compounds detected were increased in 

the transgenic lines compared with the non GM control, with metabolites associated with  
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several metabolic pathways increasing in tandem.  Nine of the 88 compounds in the GM 

tubers were below detectable limits in the WT tubers. 

Deferenez et al (2004) applied NMR and Liquid Chromatography (LC)-MS protocols to 

GM potato lines with modifications in a range of metabolic pathways.  Whilst some 

differences were observed the GM lines and their controls the largest differences occurred 

between the non-GM parental material used to generate the GM lines. 

Similarly, Catchpole et al (2005) used GC-Time of Flight (ToF)-MS and FIE-MS to 

provide a comprehensive comparison of total metabolites in field-grown potato genetically 

modified to induce fructan biosynthesis.  With the exception of the predicted intended effects 

of up-regulated fructans and their expected derivatives, the levels of metabolites detected 

were very similar in the GM and its control.  Importantly, metabolite levels in the GM lines 

fell within the range of the 5 non-GM commercial cultivars used as reference material. In fact, 

a major finding from the study was the large variation in the metabolite profile between the 5 

conventional cultivars 

Whilst assessing potato tubers for compositional changes occurring after genetic 

modifications to different metabolic pathways, Parr et al (2005) positively identified 

kukoamine A, and related phenolics compounds, in wild type tubers.  These were 

subsequently detected in tomato (Lycopersicon esculentum) and Nicotiana sylvestris, but were 

not detectable in Arabidopsis thaliana or Beta vulgaris.  This surprising discovery in a range 

of Solanaceous species, including potato, provides evidence for the potential of non-targeted 

analysis such as metabolomics in studying plant metabolites, as such metabolites would not 

have been discovered using a targeted approach. 

 

4. Soft Fruit 

As with many crop species, soft fruit such as blueberry, raspberry, strawberry and 

blackcurrant are characterised by a wide range of metabolite classes which influence both 
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quality and nutrition value. These include sugars, acids, amino acids, carotenoids and simple 

to complex polyphenolics to name but a few.  Subclass diversity is also evident with the 

polyphenol group including anthocyanins, flavonols, (iso)flavones, flavanones, catechins, 

ellgaitannins, cinnamates and hydroxyl benzoic acids and stillbenes (Pietta et al., 2003; 

D'Archivio et al., 2007; Mullen et al., 2007).  These subclasses are further populated by 

differential levels and pattern of polyphenol polymerization, glycosylation, methylation and 

acylation (Clifford, 2000; Reed et al., 2005; Xie and Dixon, 2005; Prior and Wu, 2006). 

Metabolite diversity in soft fruit is accompanied by a significantly broad and dynamic 

content range.  For example, total anthocyanin content can be virtually undetectable in fruit 

such as banana but can reach levels of 2-10 mg.g-1 fresh weight in blackcurrant, raspberry, 

blueberry, elderberry,  and the lesser researched fruit choke berry (Clifford, 2000).  Similarly, 

other metabolites impacting upon organolepsis (sugars and organic acids), nutrition (vitamins 

C, A etc) and putative bioactive components (flavonoids) also display similar levels of 

variation (Anon 2003; Anon 2009a,b). 

The combination of all of the above factors have meant that applications of true 

metabolomics (i.e. an untargeted study of metabolite changes either by GC-MS, LC-MS, 

NMR etc) to fruit is at a very early stage and have been limited to melon (Biais et al., 2009, 

2010), raspberry (McDougall et al., 2008; Stewart et al., 2007) and strawberry (Fait et al., 

2008).  The approach taken by Biais et al (2009, 2010) focused on establishing within fruit 

spatial variation in primary metabolites using a cross comparative approach mining 1H NMR 

and GC-ToF-MS data for metabolite trends at a spatial level using independently performed 

PCA and multi-block hierarchical PCA (HPCA). .  In general, the analytical systems yielded 

similar spatial trends in metabolites.  Confirmation of this cross-comparability was revealed 

by a correlation-based superblock HPCA for direct comparison of both analytical data sets.  

The HPCA approach allowed different source data sets, with different levels of sensitivity, to 

be confidently cross-compared thereby extending the validity of the multi-analytical approach 
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to metabolomics.  For melon at least this has been extended to determine the underlying 

factors impacting upon shelf life and associated spoilage via hypoxia related fermentation. 

For strawberries, fruit development has been studied using a combined GC-MS and 

UPLC-QTOF-MS (Fait et al., 2008) covering not only primary metabolites but also 105 

secondary metabolites including phenylpropanoid derivatives.  This represents a significant 

step beyond the state-of-the-art which has generally confined itself to reporting on differences 

in specific chemical classes such as flavonoids (Wang et al., 2003; Panico et al., 2009) and 

amino acids (Keutgen and Pawelzik, 2008) due to genetic variation or stress (Capocasa et al., 

2008).  

The application of metabolomics to study trait inheritance or the influence of the 

environment on primary and secondary changes is in its infancy with respect to soft fruit.  

This approach has been hampered, at least with respect to fruit breeding, by the sheer 

numbers of samples (distinct lines, replication) to be analysed in a standard segregating 

population.  Methods to manage this have been developed by Stewart et al (2007) and 

McDougall et al (2008) who have truncated standard LC-MS to give a short column method 

that is closer to DI-MS (S-DI-MS).  Their study employed the same segregating raspberry 

population in two distinct growing environments, one a low fertiliser site with minimal 

standard agronomic management and the other one classified as a high health site with 

standard and regular inputs of fertiliser and agronomic management.  Mature fruit from these 

sites showed clear differences in global metabolites but year-on-year variation was likely to 

be the key driver of metabolite variation observed between the sites.  Interestingly, the PCA 

data for one of the years was clearly differentiated with regard to the high and low input 

systems the reason for which is most likely the dry weather experienced during fruit 

development and the differential soil water retention capacities between sites. 

When each site and season were analysed independently, segregation of chemical classes 

within the breeding population was evident. A wide range of polyphenols were characterised 
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but the most evident amongst these were the following: cyanidin 3-glucoside, cyanidin 3-

sophoroside, cyanidin 3-glucosylrutinoside cyaniding 3-rutinoside, pelargonidin 3-

sophoroside, pelargonidin 3-glucosylrutinoside and quercetin acetylrutinoside.  Analysis 

using PCA indicated segregation within the population for the cyanidin-3-sophoroside and 

cyanidin-3-rutinoside groups.  This is informative and means that the SC-DI-MS approach 

could facilitate a rapid screen to identify progeny elevated in these compounds.  This 

approach has subsequently been validated as a “near-quantitative” approach, for 

(poly)phenolic metabolites at least, by McDougall et al (2008) and is currently being 

expanded to include strawberry and blackcurrant populations with the aim of correlating  

metabolomic data with sensory properties. . 

 

Conclusions 

The characterisation of natural diversity in plant metabolites using unbiased metabolite 

profiling approaches is already providing us with a deeper knowledge of food composition 

and its variable nature both within and between species.  This baseline approach is already 

being applied in comparisons of GM crops with non GM comparators with a history of safe 

use, but metabolomic data are not specifically requested in the risk assessment process (at 

least not to date).  Some argue that these unbiased analytical techniques should indeed be 

applied to detect unintended effects and reduce uncertainty.  However, the potential use of 

these approaches in food safety and quality assessment need not be confined to GMOs. 

Consideration should be given to their use in a much broader context, for example with regard 

to novel non- GM food and feed.  This should however, be on a case by case basis.  
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Table 1.  Peak-based comparison of chromatograms obtained by metabolite profiling of wild-

type Xiushui 110 and mutant lines Os-lpa-XS110-1 and Os-lpa-XS110-2 grown in 

2005/2006. 

 

 Field Trial  

 Hainan Jiaxing Hangzhou 1 Fuzhou Guangzhou  

wild-type vs. mutant totala diff.b total diff. total diff. total diff. total diff. 
consistent 

diff.c 

XS110 vs. lpa-XS110-1 144 58 121 47 118 50 135 51 111 48 5 

XS110 vs. lpa-XS110-2 128 32 107 21 107 28 121 44 101 24 2 

 

a Number of peaks included for comparison in fractions I-IV (peak height > 1000 µV) 

b Number of peaks statistically significant different between wild-type and mutant line in fractions I-

IV (p < 0.05) 

c Number of peaks statistically significantly different between wild-type and mutant line at all five 

analyzed field trials 

 

where diff. = difference(s) 
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Figure 1.  Principal components analysis of metabolite profiling data from fractions I-IV in 

growing seasons 2004 (A), 2005 (B), 2006 (C) and from combined data of 2004-2006 (D, E) 

at farming location Frankendorf, Bavaria. 
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Figure 2.  Principal components analysis of metabolite profiling data from fractions I-IV of 

cultivar Amadeo in growing seasons 2004 (A), 2005 (B), 2006 (C) and combined 2004-2006 

(D) at the four locations Mittich, Reith, Strassmoos and Thann. 
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Figure 3.  Principal components analysis of GC/MS metabolite profiling data obtained by 

triplicate analysis of three maize lines (  GM Bt,  GM RR,  non-GM).  The material was 

grown at different environments in South Africa differing in location and growing season 

(Potchefstroom 2004, Petit 2004-2006, Lichtenburg 2004). For Petit 2005 three technical 

replicates were analyzed. 
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Figure 4.  Principal components analysis of standardized GC-FID metabolite profiling data 

from the polar fractions III (A) and IV (B) of the japonica wild-type rice Xiushui 110 (●) and 

the low phytic acid mutants Os-lpa-XS110-1 (●) and Os-lpa-XS110-2 (●) grown at five field 

trials in 2005/2006; marked field trials: HN, Hainan; JX, Jiaxing. 


