

Project number: 35-2-38-08

Project acronym: NS FRITS

Project title: North Sea Freight and Intelligent Transport Solutions

Thematic priority: Improving Accessibility to places in the North Sea Region

Area of intervention: To promote the development of efficient and effective logistics solutions

Start date of project: 01/01/09

Duration: 36 months

Deliverable reference number: N/A

Deliverable title: NS FRITS System Services and Functionalities
Description

Version: 1.0

State within Consortium: DRAFT: - FOR APPROVAL: - APPROVED: X

Lead contractor of this deliverable: Avanti Communications

Other contributing contractors: Volvo, Avonwood

 Project co-funded by Interreg IVB North Sea Region Programme (2007 – 2013)

DISSEMINATION LEVEL

PU Public

PP Restricted to other programme participants (including Interreg IVB Services)

RE Restricted to a group specified by the consortium (including Interreg IVB Services) X

CO Confidential, only for members of the consortium (including Interreg IVB Services)

North Sea Freight and Intelligent Transport Solutions

Page: 2 / 53

Contents

1 INTRODUCTION ... 3

1.1 PROJECT SCOPE .. 3

1.2 PURPOSE OF THE DOCUMENT .. 3

2 REFERENCE DOCUMENTS .. 4

2.1 REFERENCE (R) AND APPLICABLE (A) DOCUMENTS ... 4

2.2 ABBREVIATIONS ... 4

3 DOCUMENT OVERVIEW ... 5

3.1 EXECUTIVE SUMMARY ... 5

3.2 DOCUMENT LOCATION IN PROJECT ACTIVITIES ... 5

4 LIST OF FUNCTIONALITIES ... 6

4.1 LOCATION- BASED TRANSPORT INFORMATION PROVISION (INCLUDING TRAFFIC

AND WEATHER) ... 6

4.1.1 Functionality concept description .. 6

4.1.2 Benefits of the functionality ... 6

4.1.3 Useful analogy... 6

4.1.4 Who will find this functionality useful? ... 6

4.1.5 Additional comments ... 7

4.2 FLEET MANAGEMENT ... 7

4.2.1 Functionality concept description .. 7

4.2.2 Benefits of the functionality ... 7

4.2.3 Who will find this functionality useful? ... 7

4.2.4 Additional comments ... 8

4.3 DISTANCE-BASED TRANSPORT INFORMATION PROVISION 8

4.3.1 Functionality concept description .. 8

4.3.2 Benefits of the functionality ... 8

4.3.3 Who will find this functionality useful? ... 9

4.3.4 Additional comments ... 9

4.4 NS FRITS AGREEMENTS .. 9

4.4.1 Functionality concept description .. 9

4.4.2 Benefits of the functionality ... 9

4.4.3 Useful analogy... 10

4.4.4 Who will find this functionality useful? ... 10

4.4.5 Additional comments ... 10

5 APPENDICES ... 11

North Sea Freight and Intelligent Transport Solutions

Page: 3 / 53

1 INTRODUCTION

1.1 PROJECT SCOPE

The NS FRITS (North Sea Freight Intelligent Transport Solutions) project aims to improve competitiveness
and the quality of life in the North Sea Region by addressing freight volumes, inter-modality, congestion,
emissions and associated security threats by advancing coherence for the freight supply chain through an
innovative process that, when fully operational, will provide a dedicated information architecture capable of
informing drivers and other major actors in the freight logistics supply chain of changing circumstances within
the region‟s major transport corridors and between transport modes.

1.2 PURPOSE OF THE DOCUMENT

This document is a summary of the functionalities and capabilities of the NS FRITS system. It is of interest to
all stakeholders technical and non-technical alike. The capabilities of the system have been particularly
summarised and simplified in this document for brevity and ease of comprehension.

North Sea Freight and Intelligent Transport Solutions

Page: 4 / 53

2 REFERENCE DOCUMENTS

2.1 REFERENCE (R) AND APPLICABLE (A) DOCUMENTS

[1] Concepts document - A

[2] Results of user survey - A

[3] User requirements - A

[4] System requirements – A

[5] Pilots description and approach – A

2.2 ABBREVIATIONS

ETA Estimated Time of Arrival

HGV Heavy Goods Vehicle

ICT Internet and Communications Technology

POI Point Of Interest

TIS Transport Information Services

North Sea Freight and Intelligent Transport Solutions

Page: 5 / 53

3 DOCUMENT OVERVIEW

3.1 EXECUTIVE SUMMARY

This document provides a summary of the NS FRITS system capabilities. It emphases the fact that the NS
FRITS system is a toolbox from which users can choose the specific capabilities that suit their needs. The
document breaks down the services provided by the NS FRITS system into the following;

 Location-based transport information provision (including traffic and weather)

 Distance-based transport information provision

 Fleet management

 NS FRITS Agreements

The document does not delve into details about the services but rather describes the functionalities including
benefits that each service provides - this is deliberate so that the document is easily comprehensible by
technical and non-technical stakeholders alike.

For each service or functionality, the rationale for its inclusion in the NS FRITS system is described, followed
by the benefits that the functionality provides to users, then example entities in the transport logistics sector
that could take advantage of the functionality are described, and finally some additional information is
provided. This format is replicated for each of the functionalities. The document concludes with an appendix
that constitutes photos taken whilst the system was being tested over several weeks in and around London.

It is worth pointing out that for some of the functionality described in this document, similar offerings exists in
the ITS market place but these are usually prohibitively expensive for the smaller entities in the freight
logistics transport industry at which the NS FRITS system is targeted. The NS FRITS system is unique in
that it has utilised best-of-breed free and open source tools to develop an affordable Transport Information
Services (TIS) platform that is deployable on a variety of hardware devices and designed to meet specific
user needs.

3.2 DOCUMENT LOCATION IN PROJECT ACTIVITIES

This document is not an official deliverable as such but constitutes output from WP4 activities that fit logically
into WP5. Its location in the context of other project activities is shown in Figure 11 below;

 Figure 1: Document location in project activities

North Sea Freight and Intelligent Transport Solutions

Page: 6 / 53

4 LIST OF FUNCTIONALITIES

4.1 LOCATION- BASED TRANSPORT INFORMATION PROVISION (INCLUDING
TRAFFIC AND WEATHER)

4.1.1 Functionality concept description

The NS FRITS system provides location-based Points Of Interest (POI) information sourced in real time that
HGV drivers can find helpful and practical. The points of interest are categorised as follows;

 Traffic information (including road accidents/incidents, weather and obstructions)

 Crime hotspots

 Safe/secure parking locations including truck stops

 Customs information

 Ferry information

The user typically selects the categories that they are interested in when they start the application on their
mobile device. Information about the selected category is then provided to them (by text-to-speech) based
on their location i.e. whilst they are driving. The information is overlaid on a map at the appropriate location
using descriptive and intuitive icons e.g. a relatively insignificant road obstruction that does not impact much
on traffic is shown with a small icon, whereas one with major impact is shown with a bigger icon etc.

The user also has the option of searching for POI information at any location. Communication with the
mobile device can be performed hands-free i.e. using text-to-speech and speech-to-text.

All information is provided to the driver in their preferred language where available.

4.1.2 Benefits of the functionality

Information provided by the NS FRITS system is sourced from reputable national transport and traffic
management authorities and thus is a one-stop-shop that satisfies a truck drivers POI information needs.
The information serves as a decision support tool enabling drivers to make more informed choices.

Cost of freight crime targeting commercial vehicles and other loads within the European Union alone is
estimated at about 8.2 billion Euros

1
. Knowledge of safe places to park is very sought after by truck drivers

2
.

Lost revenue by the operator, and time by the driver resulting from time spent driving out-of-route miles to
avoid undesirable incidents/locations or in search of POI is reduced. Plus, all information provided by the NS
FRITS system is retrieved in real time meaning that the truck driver gets up to date information. Routing
information is provided that takes into account vehicle dimensions including weight and load restrictions as
well as toll calculations etc.

In a nutshell, this functionality eliminates travel woes for trucks driver by empowering them with requisite
transport information thus ensuring that they make informed choices.

4.1.3 Useful analogy

GPS car navigation system specifically for truck drivers – Figure 2 below shows NS FRITS POI
information on end user devices.

4.1.4 Who will find this functionality useful?

Freight operators with only a few trucks including one man operators that require the competitive advantage
afforded by an HGV optimised decision support tool

1
 Europol, Cargo theft report, 2009, The Hague

2
 The NS FRITS consortium and stake holder organisations, NS FRITS driver survey results, 2009, U.K.

North Sea Freight and Intelligent Transport Solutions

Page: 7 / 53

Figure 2: NS FRITS application on smartphone and tablet devices

4.1.5 Additional comments

The functionality can be used in isolation or in conjunction with all the other functionalities of the NS FRITS
system. However, in the trials, there is always the risk that if the information source is not updated frequently,
users could get disillusioned by the system if the same information is provided over and over again each
time they use the application.

4.2 FLEET MANAGEMENT

4.2.1 Functionality concept description

Real time visibility of assets (driver and cargo) is important in freight logistics transport. Transport of valuable
and high value cargo typically needs to be tracked to ensure safe delivery at the destination or to ensure
safety of the population in the vicinity of the transport trajectory. It is estimated that empty journeys constitute
over 35% of national transport and about 30% of international transport

3
. With such startling statistics, a

system that enables a fleet dispatcher/manager to see where all his/her trucks are at all times, and allows
he/she to communicate with them without contravening lawful usage of in-vehicle systems is invaluable.

NS FRITS provides just such a system.

4.2.2 Benefits of the functionality

A freight operator using this functionality of the NS FRITS system will be able to see where all his/her trucks
are at all times thus optimising fleet utilisation since orders can be assigned to trucks as a function of
location. This results in direct benefits to the freight operator that include better management of tight
schedules, improved accountability, safety and security of mobile assets and personnel, and ultimately,
improved customer service and enhanced revenue.

Additional benefits also include reduced fleet operation cost by lessening unauthorised vehicle use, idling, or
out-of-route situations as well as more affordable insurance premiums.

This functionality enables location transparent management since the vehicle fleet to be managed from
anywhere, anytime.

4.2.3 Who will find this functionality useful?

Freight operators with only a few trucks that cannot afford the bespoke expensive fleet management
systems used by their larger competitors – Figure 3 below shows the NS FRITS fleet management and
smartphone interface.

3
 European Commission, Freight Transport Vademecum, 2009, Belgium

North Sea Freight and Intelligent Transport Solutions

Page: 8 / 53

Figure 3: Fleet management and smartphone interface

4.2.4 Additional comments

This functionality can be promptly customised and enhanced to meet specific needs or requirements. The
functionality can be used in isolation or in conjunction with all the other functionalities of the NS FRITS
system.

4.3 DISTANCE-BASED TRANSPORT INFORMATION PROVISION

4.3.1 Functionality concept description

One of the major objectives of the NS FRITS project is to enable enhancement of the information provided to
Heavy Goods Vehicle drivers, the majority of who travel across international borders where traffic,
regulations, and language can become incomprehensible.

Furthermore, some entities involved in freight logistics transport would like to provide very specific and time-
dependent information to users of their services but do not have the requisite ICT tools to do so and thus
resort to inefficient mechanisms like print media i.e. brochures/flyers etc.

4.3.2 Benefits of the functionality

This functionality provides the ICT tools to enable any entity involved in freight transport logistics to provide
information to users of their services. The information can include images, documents, sound files and links
to other web resources etc. What makes this piece of functionality unique is that it enables the information
provider to specify exactly when he/she wants the user to receive the information. For example, a ferry
operator could provide information such as documents that will be needed, procedures, driving instructions
etc. A driver who is scheduled to use the ferry will get the information through his/her NS FRITS enabled
smartphone or in-cab device – information on required documents will be provided when he/she starts up the
application at home, procedures will be provided when he/she is about a few miles close to the destination
and driving instructions will be provided when he/she is even closer. What is even better is that the NS
FRITS system can translate the information such that the driver gets it in their preferred language.

Other transport authorities including data sources/providers that have information in legacy formats that is
not particularly computer friendly can also use this functionality to provide information to users.

North Sea Freight and Intelligent Transport Solutions

Page: 9 / 53

4.3.3 Who will find this functionality useful?

GCD Glomb (a container terminal operator in Germany- see below) could find this functionality desirable as
they can easily utilise it to notify drivers of the correct in-gate queue to get into etc.

This functionality was successfully tested with the Norwegian customs at Svinesund who have problems with
foreign HGV drivers not understanding local regulations and procedures – Figure 4 below shows the web
interface used to enable this functionality.

Figure 4: NS FRITS Information provision interface

4.3.4 Additional comments

This functionality can be used by any entity in the transport industry wishing to use ICT tools to broadcast
specific time-dependent information to a large group of users in different languages. The functionality can be
used in isolation or in conjunction with all the other functionalities of the NS FRITS system. It can be
customised to meet additional user needs.

4.4 NS FRITS AGREEMENTS

4.4.1 Functionality concept description

The concept of Agreements in NS FRITS provides a generic mechanism that enables two or more actors in
the freight logistics supply chain such as a driver and a goods terminal operator, who have agreed on a
transaction at a specific time to keep each other informed about deviations.

4.4.2 Benefits of the functionality

The mechanism provides the goods terminal operator with real time visibility of the Estimated Time of Arrival
(ETA) of each driver. This helps the goods terminal operator plan operational processes and predict work
load since the NS FRITS agreements service can provide information on which driver is scheduled to arrive
at what time. The service can also help the driver by providing him with information about delayed containers
so that he does not go to the terminal before his goods are ready for pickup. This helps avoid wasted driver
time and effort including queues etc.

North Sea Freight and Intelligent Transport Solutions

Page: 10 / 53

4.4.3 Useful analogy

Live bus/train timetable or live flight information at an airport.

4.4.4 Who will find this functionality useful?

The concept was developed to solve a recurrent problem at GCD Glomb, a container terminal operator
based in Bremerhaven, Germany. Glomb‟s main services are handling, clearance and shipping of cargo,
including transport to destination. Glomb owns a large fleet of trucks that it uses but also interacts with other
freight operators who prefer to use their own trucks.

4.4.4.1 Problems that the NS FRITS Agreements concept can help with;

1. Glomb does not know exactly when a truck driver will turn up to pick their cargo. Sometimes the
driver turns up and the cargo has not yet arrived.

2. Sometimes a lot of drivers turn up at the same time resulting in queues at the in-gate terminal and
service degradation due to inadequate resourcing.

3. Drivers waste valuable time waiting around that would have been put to more productive use if
they‟d had prior notification of changing circumstances.

Figure 5: NS FRITS example interface as used by an operator to view truck arrival times.

4.4.5 Additional comments

It is perhaps safe to assume that many other freight operators face similar problems to those faced by Glomb
as described above. The Agreements functionality can be used in isolation or in conjunction with all the other
functionalities of the NS FRITS system.

A two day intensive trial of this functionality with some trucks and a terminal operator could demonstrate the
practical benefits and usefulness of this capability.

North Sea Freight and Intelligent Transport Solutions

Page: 11 / 53

5 APPENDICES

Appendix 1: Photographs from internal trials around London, UK

North Sea Freight and Intelligent Transport Solutions

Page: 12 / 53

Appendix 2: NS FRITS system specification – Agreement service

Application description

The agreement provider application is an application that allows data providers to interact with NS FRITS
users through the NS FRITS agreement protocol. An NS FRITS Agreement is non-legally binding contract
between a truck driver or a transport manager and an agreement provider. Agreements are generally set up
by NS FRITS Users to inform their time of arrival and allow agreement providers to sent updates to them.

The purpose of an agreement is to enable direct communication between data providers and users. After an
agreement has been setup, data providers can send updates containing for example delays instantly to the
users. Users also have the possibility to send messages to the data provider if they for example will arrive
later.

This application allows agreement providers to view the time of incoming trucks, send updates to the drivers
and receive notifications of truck delays.

Application features

 Ability to accept incoming agreements from drivers.

 Ability to sent update messages to one/several/all agreements.

 Ability to register and display updated arrival times from drivers.

 Ability to display incoming trucks and their arrival time in a list.

 Ability to view messages that drivers has sent.

 Ability to visualize the amount of incoming drivers in the near future with a graph.

Justification

The NS FRITS agreement application is useful for any data provider that also wants to publish an agreement
service. For example a ferry terminal could see exactly what time all trucks are arriving, send messages to
individual trucks or inform them of delays. This application should be seen as an example of a generic
implementation of an agreement provider. In the future, providers can modify this application to suit their
specific needs better.

Application design

The Agreement Operator application consist of four different modules as illustrated in the figure below. The
Agreement server accepts agreements from truck drivers, sends out updates to existing agreements and
receives agreement updates from truck clients. It uses the Data model/DAO module to be able to query the
database, which stores all agreements. The web application also uses the Data model/DAO to be able to
fetch current agreements, updates and messages and display them to an agreement operator.

Data model/DAO

Agreement

database

Web-application

Java Servlet

Agreement Operator

using web browser

Agreement server

XMPP-client

Truck drivers

NS FRITS

XMPP server

Agreement Operator

application

North Sea Freight and Intelligent Transport Solutions

Page: 13 / 53

The technical level design of the agreement operator is similar to the NS FRITS Core server, NS FRITS Data
provider and the NS FRITS Data model applications. Read those documents for more information.

Operating environment

The web-application have been tested with Apache Tomcat 6.0.20. The server-application is runnable on all
platforms supporting the Java Virtual Machine and JRE 1.6.

Dependencies

Agreement server

The following Libraries are needed to run the NSFRITS-ExternalOperator project:

 PostgreSQL JDBC (postgresql-8.4-701.jdbc4.jar)

A JDBC driver for the PostgreSQL database that is being used.

 c3p0 JDBC DataSources/Resource Pool (c3p0-0.9.1.2.jar)

Library used for database connection pooling.

 Smack API 3.1.0 (smack.jar and smackx.jar)

Providing all XMPP communication

The following projects are needed to run the NSFRITS-ExternalOperator project:

 NS FRITS-ExternalOperator-Datamodel

Web application

The following Libraries are needed to run the NSFRITS-ExternalOperator project:

 PostgreSQL JDBC (postgresql-8.4-701.jdbc4.jar)

A JDBC driver for the PostgreSQL database that is being used.

 c3p0 JDBC DataSources/Resource Pool (c3p0-0.9.1.2.jar)

Library used for database connection pooling.

The following projects are needed to run the NSFRITS-ExternalOperator project:

 NS FRITS-ExternalOperator-Datamodel

Interfaces and classes including important functions

Classes

<A UML diagram that summaries the classes that constitute the application and how they relate to each
other>

Communication interfaces

The communications protocols are described in NS FRITS system specification - API.

User interface

The user interface of the agreement operator application will be described in a series of screenshots,
explaining the functionality available.

NS%20FRITS%20system%20specification%20-%20Core%20server.doc
NS%20FRITS%20system%20specification%20-%20Data%20provider.doc
NS%20FRITS%20system%20specification%20-%20Data%20provider.doc
NS%20FRITS%20system%20specification%20-%20Data%20model.doc
NS%20FRITS%20system%20specification%20-%20API.doc

North Sea Freight and Intelligent Transport Solutions

Page: 14 / 53

When the agreement operator launches the application, all trucks that successfully has set up an agreement
will be displayed in the list.

The clock icon to the left symbolizes if the user will be in time or not. A red clock means that the user will be
late, while a blue clock means that the user will be in time.

The external id field is an optional parameter that the truck can send to connect the agreement to a real
contract, like for example a booking id. The idea behind this is to enable the development of smarter
application in the future, like for example view all drivers that are late for a particular ferry.

The agreement time is the time the driver sets when he/she sets up the agreement.

The arrival time contains a newer updated time sent by the driver. If the driver detects that he/she will be late
or early, this value is set.

The operator can also sort the values according to vehicles In time, User, ExternalID or Arrival time by
pressing the column header. When sorting according to Arrival time, the program chooses the value in the
arrival time column if available, otherwise the agreement time.

North Sea Freight and Intelligent Transport Solutions

Page: 15 / 53

The select checkbox is used to select what agreement(s) the operator wants to send a new message to.
After selecting, the operator enters a text in the textbox, a new arrival date and then presses the „Send
Update(s)‟ button.

By clicking the link in the message column, the operator can see the last message the driver sent.

North Sea Freight and Intelligent Transport Solutions

Page: 16 / 53

By pressing the Graph View, the application will visualize the intensity of driver by drawing a graph with
incoming drivers on the y axis and time on the x axis. It is possible to change the display settings of the
graph by entering new values in input boxes below.

By hovering the mouse over a certain point in the graph, the operator can more verbose information about
the drivers arriving at that particular time.

Fault check, diagnostics and FAQ

It is possible to try out the Agreement operator with a test client distributed with the NSFRITS-
ExternalOperator project. This client is located in the test package, eu.nsfrits.externaloperator.testclient
and is started by running the Sender.java class. This client simulates several trucks, each setting up.

North Sea Freight and Intelligent Transport Solutions

Page: 17 / 53

Appendix 3: NS FRITS system specification – Android client

Application description

This application aims to help the trucker to decide which route is the best to take mainly providing him with
security information. It also enables the trucker to receive and send updates about the arrival time to a place
where he has an agreement with an external operator.

Application features

 Log-in to the NSFRITS server.

 Choose categories.

 Choose languages.

 Receive a new order from a transport manager.

 Send a list of checked things on the vehicle.

 Choose, find and edit a route and retrieve the information along.

 Search for information around a certain location.

 Subscribe to a service to receive automatic information updates.

 Send an alert to the NSFRITS server and to the dispatcher.

 Settle an agreement with an external operator and receive updates about the arrival time.

 While driving :

o send updates about his position,

o compute the time remaining to reach a location in order to update the arrival time,

o find the new information in the vicinity.

Justification

This application is useful because it implements all the functionality that the NSFRITS API provides. It allows
the trucker to be helped for preparing his journey by giving him information along the route or when he is
driving by receiving updates in the vicinity. It also enables a better synchronisation between the truckers and
the external operator via the agreement system which keeps both part updated about the arrival time and via
a messaging mechanism.

This application is a good example of the way that existing applications will have to integrate the NSFRITS
API in their system. But it‟s also a proper application which can be fully used in real life by independent
truckers who wish to use the NSFRITS services to help them before and during their journey.

Application design

The application design tries to follow the MVC architecture.

Model

The model is mainly based on a class collection fed by the information retrieved from the NSFRITS server.
Global data is also kept in the model to configure the application and ensure the consistence.

View

The main view of the application is a map view and a menu from which the user can open several dialogs to
configure the application or where he can trigger several kinds of actions (requests to the server).

The view can also be a navigation view (Google service).

Controller

The controller is the link between the view and the model. When the user triggers an action from a dialog
window, a specific controller is called to retrieve information from the NSFRITS server (POIs along a route,
agreement updates) or from a Google service (e.g. geocoding, find route).

Then the controller injects the information in the model which can be used to update the view.

North Sea Freight and Intelligent Transport Solutions

Page: 18 / 53

Operating environment

The application can be run in any Android environment. The application works with Eclair and Froyo.

The application has been tested on an Emulator via a plug-in bonded to Eclipse and on a Google HTC
device. Some amendments will certainly be needed to adapt the software to other platforms, especially the
resolutions of the dialog windows.

Dependencies

The following libraries are needed to run the application.

 XMPP library for Android (asmack-2010.05.07.jar)

Used for communication with the NSFRITS Server via the XMPP protocol.

The following libraries come with the android SDK:

 Android library to be able to develop Android applications(android.jar)

 Google library to use Google Maps in Android applications (maps.jar)

Implementation constraints

The development of an Android application has been accomplished via a plug-in bonded to Eclipse. An
emulator of the Android device is used to test the application. Several problems exist with the utilisation of
the emulator:

 The launch of the emulator is very long

 The network connection is sometimes non-existent.

 The utilisation of certain applications are very slow (e.g. displacements in Google maps or XMMP
communication)

 Certain functionalities are not available on the emulator (e.g. the speech to text can‟t be used on the
phone)

 Certain functionalities can‟t be used on the phone (e.g. mock coordinates via the DDMS)

 Certain functionalities don‟t work the same way on both platforms (e.g. multi-touch on the phone
screen does not react in the same way than on the emulator)

Lots of developed functionalities in the application are based on Google services. The application is then
dependent of a third party. It needs to register for a Google map key for example and it cannot work if
some services are not available.

North Sea Freight and Intelligent Transport Solutions

Page: 19 / 53

Interfaces and classes including important functions

Classes

External interfaces

The Android client application does not have any external interfaces.

Communication interfaces

The Android client application uses the Extensible Messaging and Presence Protocol (XMMP) to
communicate with the NSFRITS server.

The communication interface is described in NS FRITS system specification - API.

Software interfaces and interrelation with other applications

The main interaction with another application is the communication with the NSFRITS server via XMMP.

NS%20FRITS%20system%20specification%20-%20API.doc

North Sea Freight and Intelligent Transport Solutions

Page: 20 / 53

The android application can also communicate with a transport manager. It can receive a job from it and if
there is an accident or any other problem, it can send an alert.

The android application can also set up agreements with external operators. Those agreements enable the
user and the external operator to update each other about the arrival time. They can also exchange
messages for a better comprehension of the situation.

User interface

This section will be summarized in a series of screenshots, each describing use cases of the application.

The user has to connect to the NS FRITS server by providing his login credentials and the XMPP server
details.

North Sea Freight and Intelligent Transport Solutions

Page: 21 / 53

The user chooses the categories of service he wants to see display on the map.

The user can choose the languages preference order in which he would like to see the information
displayed.

North Sea Freight and Intelligent Transport Solutions

Page: 22 / 53

The user can choose, find and edit a route. He can find the destination via several possibilities:

 Write down the name of the destination.

 Use the text to speech functionality to guess the destination from the user voice.

 Choose the location on the map.

 Use the current location of the vehicle via the onboard GPS.

The user can search information around a certain location and for a special kind of categories.

North Sea Freight and Intelligent Transport Solutions

Page: 23 / 53

The user can see the points of interest along the route and can click on those points to see more information
about them. Those points of interest are retrieved when the user choose a route but can also be retrieved
automatically when the user drives.

The user can manage the agreements he has performed with external operators and manually send updates
about his arrival time and/or send a message.

North Sea Freight and Intelligent Transport Solutions

Page: 24 / 53

The user has to check his vehicle before driving by filling a form that he has to send to the transport
manager.

An alert button enables the user to send his location to warn the other users about his situation. It can also
be configured to send an alert to a transport manager.

North Sea Freight and Intelligent Transport Solutions

Page: 25 / 53

Fault check, diagnostics and FAQ

If the Google map is not displayed, it means that either you don‟t have an internet connection or your Google
map key is not correct (you need to have a unique key for your application and for your emulator).

If you don‟t manage to connect to the NSFRITS server, you should ensure that the server you are using is
running and that your credentials are correct for this server.

If any problem happens during the execution of the application, you can use the DDMS view provided in

North Sea Freight and Intelligent Transport Solutions

Page: 26 / 53

Appendix 4: NS FRITS system specification – API

IQ Methods

Currently implemented methods using the <iq/> stanza.

Method: getInfoForPoint
Argument: point
Argument type: WKT Point
Expected response: list of infoobject
Description: Returns all InfoObjects near the point provided in the argument. Only InfoObjects inside the
users previously set categories will be returned. The result will be displayed in the users highest priority
language.

Example:
<!-- Request -->
<iq id='qxmpp10' to='nsfrits@VTECW389.vcn.ds.volvo.net/nsfrits' type='get'>
 <query xmlns="nsfrits:iq">
 <methodname>getInfoForPoint</methodname>
 <arguments>
 <argument>
 <key>point</key>
 <value>POINT(11.878967 57.737883)</value>
 </argument>
 </arguments>
 </query>
</iq>

<!-- Response -->
<iq from='nsfrits@vtecw389.vcn.ds.volvo.net/nsfrits' to='truck1@vtecw389.vcn.ds.volvo.net/QXmpp'
id='qxmpp10' type='result'>
<query xmlns='nsfrits:iq'>
<methodresponse>
<infoobject>
 <id>20</id>
 <validity>
 <from>2010-03-30 10:09:39</from>
 <to>2010-04-10 23:56:19</to>
 </validity>
 <sequenceid>1</sequenceid>
 <location>
 <area>POLYGON((11.546630859516 57.554946161479,11.546630859516
57.825065399809,11.975097656374 57.825065399809,11.975097656374
57.554946161479,11.546630859516 57.554946161479))</area>
 <point>POINT(11.644134521626 57.701266095542)</point>
 </location>
 <datanode>
 <id>23</id>
 <description>
 <title>Öckerö parking</title>
 <text>Parking space for the Öckerö ferry.</text>
 <language>en</language>
 </description>
 <attachment>
 <mime-type>image/png</mime-type>
 <size>389878</size>
<url>http%3A%2F%2F131.97.51.233%3A8084%2FServiceAdmin%2Fuploads%2F23%2Fcar.PNG</url>
 </attachment>
 </datanode>

North Sea Freight and Intelligent Transport Solutions

Page: 27 / 53

</infoobject>
</methodresponse>
</query>
</iq>

Method: getInfoForRoute
Argument: -
Expected response: list of infoobject
Description: Returns all InfoObjects along the users previously set route. Only InfoObjects inside the users
previously set categories will be returned. The result will be displayed in the users highest priority language.

Example:
<!-- Request -->
<iq id='qxmpp31' to='nsfrits@VTECW389.vcn.ds.volvo.net/nsfrits' type='get'>
 <query xmlns="nsfrits:iq">
 <methodname>getInfoForRoute</methodname>
 </query>
</iq>

<!-- See getInfoForPoint for example response -->

Method: getCategories
Argument: -
Expected response: list of category
Description: Returns all available categories and a description to each of them.

Example:
<!-- Request -->
<iq id='qxmpp34' to='nsfrits@VTECW389.vcn.ds.volvo.net/nsfrits' type='get'>
 <query xmlns="nsfrits:iq">
 <methodname>getCategories</methodname>
 </query>
</iq>

<!-- Response -->
<iq from='nsfrits@vtecw389.vcn.ds.volvo.net/nsfrits' to='truck1@vtecw389.vcn.ds.volvo.net/QXmpp'
id='qxmpp34' type='result'>
<query xmlns='nsfrits:iq'>
<methodresponse>
<category>
 <id>1</id>
 <description>
 <title>customs</title>
 <text>some text</text>
 <language>en</language>
 </description>
</category>
<category>
 <id>2</id>
 <description>
 <title>road service</title>
 <text>Road services</text>
 <language>en</language>
 </description>
</category>
<category>
 <id>4</id>
 <description>
 <title>Foreign Law</title>

North Sea Freight and Intelligent Transport Solutions

Page: 28 / 53

 <text>Foreign laws deal with the fact that different countries, and other
regions like federal states or individual cities, may have different rules and r
egulations concerning truck transports. </text>
 <language>en</language>
 </description>
</category>
</methodresponse>
</query>
</iq>

Method: setCategories
Argument: categories
Argument type: comma separated list of category id:s
Expected response: -
Description: Sets the categories a user is interested in.

Example:
<!-- Request -->
<iq id='qxmpp37' to='nsfrits@VTECW389.vcn.ds.volvo.net/nsfrits' type='set'>
 <query xmlns="nsfrits:iq">
 <methodname>setCategories</methodname>
 <arguments>
 <argument>
 <key>categories</key>
 <value>42,123,9</value>
 </argument>
 </arguments>
 </query>
</iq>

<!-- Response -->
<iq from='nsfrits@vtecw389.vcn.ds.volvo.net/nsfrits' to='truck1@vtecw389.vcn.ds.volvo.net/QXmpp'
id='qxmpp37' type='result'>
 <query xmlns='nsfrits:iq'/>
</iq>

Method: setLanguages
Argument: languages
Argument type: comma separated list of languages according to ISO 639-1
Expected response: -
Description: Sets the languages a user is interested in in a priority list, highest priority first.

Example:
<!-- Request -->
<iq id='qxmpp38' to='nsfrits@VTECW389.vcn.ds.volvo.net/nsfrits' type='set'>
 <query xmlns="nsfrits:iq">
 <methodname>setLanguages</methodname>
 <arguments>
 <argument>
 <key>languages</key>
 <value>sv,en</value>
 </argument>
 </arguments>
 </query>
</iq>

<!-- Response -->
<iq from='nsfrits@vtecw389.vcn.ds.volvo.net/nsfrits' to='truck1@vtecw389.vcn.ds.volvo.net/QXmpp'
id='qxmpp38' type='result'>

North Sea Freight and Intelligent Transport Solutions

Page: 29 / 53

 <query xmlns='nsfrits:iq'/>
</iq>

Method: setRoute
Argument: route
Argument type: WKT Linestring
Expected response: -
Description: Sets a users route to the server.

Example:
<!-- Request -->
<iq id='qxmpp41' to='nsfrits@VTECW389.vcn.ds.volvo.net/nsfrits' type='set'>
 <query xmlns="nsfrits:iq">
 <methodname>setRoute</methodname>
 <arguments>
 <argument>
 <key>route</key>
 <value>LINESTRING(11.948318 57.714785, 11.961365 57.724319, 11.981277 57.726519,
11.992264 57.715518, 11.995010 57.696809, 12.039642 57.617095, 12.065048 57.585455, 12.051315
57.508447, 12.046509 57.477450, 12.075348 57.466374, 12.019043 57.410941)
 </value>
 </argument>
 </arguments>
 </query>
</iq>

<!-- Response -->
<iq from='nsfrits@vtecw389.vcn.ds.volvo.net/nsfrits' to='truck1@vtecw389.vcn.ds.volvo.net/QXmpp'
id='qxmpp41' type='result'>
 <query xmlns='nsfrits:iq'/>
</iq>

Method: clearHistory
Argument: -
Expected response: -
Description: Removes all cached InfoObjects for that particular user from the server.

Example:
<!-- Request -->
<iq id='qxmpp44' to='nsfrits@VTECW389.vcn.ds.volvo.net/nsfrits' type='set'>
 <query xmlns="nsfrits:iq">
 <methodname>clearHistory</methodname>
 </query>
</iq>

<!-- Response -->
<iq from='nsfrits@vtecw389.vcn.ds.volvo.net/nsfrits' to='truck1@vtecw389.vcn.ds.volvo.net/QXmpp'
id='qxmpp44' type='result'>
 <query xmlns='nsfrits:iq'/>
</iq>

Method: getAllIOTypes
Argument: -
Expected response: -
Description: Returns all types known by the server with a description and an icon.

Example:
<!-- Request -->
<iq id='qxmpp44' to='nsfrits@VTECW389.vcn.ds.volvo.net/nsfrits' type='set'>

North Sea Freight and Intelligent Transport Solutions

Page: 30 / 53

 <query xmlns="nsfrits:iq">
 <methodname>getAllIOTypes</methodname>
 </query>
</iq>

<!-- Response -->
<iq from='nsfrits@segotxl493.vtd.volvo.se/nsfrits' to='test@segotxl493.vtd.volvo.se/nsfrits' id='GfaGH-6'
type='result'><query xmlns='nsfrits:iq'><methodresponse>
<iotype>
 <id>1</id>
 <icon>traffic-x6-1</icon>
 <description>
 <id>3</id>
 <title>Accidents</title>
 <text> </text>
 <language>en</language>
 <sound> </sound>
 </description>
</iotype>
<iotype>
 <icon>misc-station</icon>
 <description>
 <id>2</id>
 <title>Station</title>
 <text> </text>
 <language>en</language>
 <sound> </sound>
 </description>
</iotype>
</methodresponse></query></iq>

Method: clearSubscriptions
Argument: -
Expected response: -
Description: Removes all InfoObject subscriptions for a user.

Example:
<!-- Request -->
<iq id="M0Kka-3" to="service.VTECW405/nsfrits" type="get">
 <query xmlns="nsfrits:iq">
 <methodname>clearSubscriptions</methodname>
 <arguments></arguments>
 </query>
</iq>

<!-- Response -->
<iq type="result" id="M0Kka-3" from="nsfrits@service.vtecw405" to="test2@vtecw405/nsfrits">
 <query xmlns="nsfrits:iq"/>
</iq>

Method: addSubscription
Argument: id
Argument type: InfoObject id
Expected response: -
Description: Adds an InfoObject subscription to a user.

Example:
<!-- Request -->
<iq id="M0Kka-6" to="service.VTECW405/nsfrits" type="get">

North Sea Freight and Intelligent Transport Solutions

Page: 31 / 53

 <query xmlns="nsfrits:iq">
 <methodname>addSubscription</methodname>
 <arguments>
 <argument>
 <key>id</key>
 <value>59779</value>
 </argument>
 </arguments>
 </query>
</iq>

<!-- Response -->
<iq type="result" id="M0Kka-6" from="nsfrits@service.vtecw405" to="test2@vtecw405/nsfrits">
 <query xmlns="nsfrits:iq"/>
</iq>

Method: deleteSubscription
Argument: id
Argument type: InfoObject id
Expected response: -
Description: Deletes a specific InfoObject subscription.

Example:
<!-- Request -->
<iq id="M0Kka-6" to="service.VTECW405/nsfrits" type="get">
 <query xmlns="nsfrits:iq">
 <methodname>deleteSubscription</methodname>
 <arguments>
 <argument>
 <key>id</key>
 <value>59779</value>
 </argument>
 </arguments>
 </query>
</iq>

<!-- Response -->
<iq type="result" id="M0Kka-6" from="nsfrits@service.vtecw405" to="test2@vtecw405/nsfrits">
 <query xmlns="nsfrits:iq"/>
</iq>

Method: searchPOI
Argument: point, category, results
Argument type: WKT point, category id, int
Expected response: -
Description: returns the (results) closest InfoObjects of the specified category near the specified point.

Example:
<!-- Request -->
<iq id="M0Kka-8" to="service.VTECW405/nsfrits" type="get">
 <query xmlns="nsfrits:iq">
 <methodname>searchPOI</methodname>
 <arguments>
 <argument>
 <key>point</key>
 <value>POINT(15 59.1)</value>
 </argument>
 <argument>
 <key>category</key>

North Sea Freight and Intelligent Transport Solutions

Page: 32 / 53

 <value>5</value>
 </argument>
 <argument>
 <key>results</key>
 <value>2</value>
 </argument>
 </arguments>
 </query>
</iq>

<!-- Response -->
<iq type="result" id="19GRI-8" from="nsfrits@service.vtecw405" to="test2@vtecw405/nsfrits">
 <query xmlns="nsfrits:iq">
 <methodresponse xmlns="">
 <infoobject>
 …
 </infoobject>
 <infoobject>
 …
 </infoobject>
 </methodresponse>
 </query>
</iq>

Asynchronous messages

Client to server

Message extension: position
Argument type: WKT point
Description: Sends an update of the clients position to the server. This allows the server to send
asynchronous alerts of nearby events to the client.

Example:
<message id="FDhuP-5" to="service.VTECW405/nsfrits">
 <position xmlns='nsfrits:async'>POINT(23.8 51.2)</position>
</message>

Message Extension: position and alert
Argument type: WKT point, message
Description: Sends an alert to the server, allowing the server to create an InfoObject and send out alerts to
nearby clients.

Example:
<message id="FDhuP-6" to="service.VTECW405/nsfrits">
 <alert xmlns='nsfrits:async'>help I have crashed!</alert>
 <position xmlns='nsfrits:async'>POINT(23.7 51.1)</position>
</message>

Server to client

Message Extension: update
Description: Sends an asynchronous update to the client, it can either be a subscription update or an alert
update as specified by the “type” attribute. Each update contains one or more InfoObjects.

Example:
<message to="test2@vtecw405" from="nsfrits@service.vtecw405">

North Sea Freight and Intelligent Transport Solutions

Page: 33 / 53

<updates xmlns="nsfrits:async" type="subscription">
 <infoobject xmlns="">
 <id>59779</id>
 <provider>Aral</provider>
 <category>3</category>
 <iotype>traffic-h3-1</iotype>
 <validity>
 <from>2010-08-05T14:11:40+02:00</from>
 <to>2020-08-02T14:11:40+02:00</to>
 </validity>
 <sequenceid>10</sequenceid>
 <location>
 <area>POLYGON((10.76997 51.87287,10.80997 51.87287,10.80997 51.83287,10.76997
51.83287,10.76997 51.87287))</area>
 <point>POINT (10.78997 51.85287)</point>
 </location>
 <datanode>
 <id>70986</id>
 <description>
 <title>Aral, [38855] Aral Station Autohaus Wernigerode Gmbh - Dornbergsweg 49 - Tel. 03943/21195
[wernigerode]</title>
 <text>Aral, [38855] Aral Station Autohaus Wernigerode Gmbh - Dornbergsweg 49 - Tel. 03943/21195
[wernigerode]</text>
 <language>en</language>
 </description>
 </datanode>
</infoobject></updates></message>

Agreement API

Method: Agreement registration
Argument: agreetime, externalid
Argument type: timestamp (ISO 8601), string
Expected response: id of the registered agreement
Description: Sets up an agreement service with the operator at a specific time.

Example:
<!-- Request -->
<iq id="G47CE-14" to="customsoperator@segotxl493.vtd.volvo.se/customsoperator" type="get">
 <query xmlns="operator:iq:register">
 <agreetime>2010-08-25T13:00:00+0200</agreetime>
 <externalid>EXT72688</externalid>
 </query>
</iq>

<!-- Response -->
<iq from='customsoperator@segotxl493.vtd.volvo.se/customsoperator'
to='test1@segotxl493.vtd.volvo.se/nsfrits' id='G47CE-14' type='result'>
 <query xmlns='operator:iq:register'>
 <id>57</id>
 </query>
</iq>

Method: Agreement unregistration
Argument: agreement id
Argument type: int
Expected response: -

North Sea Freight and Intelligent Transport Solutions

Page: 34 / 53

Description: Deletes an agreement with the server.

Example:
<!-- Request -->
<iq id="iR5Cz-102" to="customsoperator@segotxl493.vtd.volvo.se/customsoperator" type="get"><query
xmlns="operator:iq:unregister">
 <id>106</id>
</query></iq>

<!-- Response -->
<iq from='customsoperator@segotxl493.vtd.volvo.se/customsoperator'
to='test1@segotxl493.vtd.volvo.se/nsfrits' id=”iR5Cz-102” type='result'>
 <query xmlns='operator:iq:unregister'/>
</iq>

Message Extension: update
Description: Sends an agreement update with a new agreement time and optionally a message containing
a description of the update. Works both client to server and server to client.

Example:
<message id="iR5Cz-92" to="customsoperator@segotxl493.vtd.volvo.se/customsoperator">
 <updates xmlns='operator:message:updates'>
 <arrivaltime>2010-08-25T14:50:28+0200</arrivaltime>
 <id>106</id>
 <text>will be arriving later</text>
 </updates>
</message>

North Sea Freight and Intelligent Transport Solutions

Page: 35 / 53

Appendix 5: NS FRITS system specification – Core server

Application description

The NS FRITS core server is the application responsible of serving requests from NS FRITS clients. The
application connects as a client to an XMPP server, where it responds to a predefined API of requests from
NS FRITS clients. The API uses XMPPs built in method-response stanza, IQ. Some of the available API
calls include: getInfoObjectAlongRoute, setLanguages, setCategories and searchForPOI.

Application features

 Serve NS FRITS clients with data from the NS FRITS database though various API calls.

 Provides a subscription service of InfoObjects, sending updates to clients as soon as object
changes.

Justification

The NS FRITS core server is responsible of providing an interface to the developers of NS FRITS clients; it
is also responsible of the communications layer of NS FRITS. Since the core server constitutes the backend
of the NS FRITS system and clients would simply not work without it, no further justification is needed.

Application design

Overview

The application consists of three layers, the XMPP layer, the API layer and the Data layer. The XMPP layer
handles connections with the XMPP server and incoming requests from NS FRITS clients. Requests are
then forwarded to the API layer where the correct method and its parameters are identified. Finally the API
layer uses the NS FRITS Data model to interact with the database and receive a result. The result is then
forwarded to the API layer which serializes it to XML so it can be sent back through the XMPP layer.

XMPP Layer

The XMPP layer is largely based on the Smack API library, which is a Java library for XMPP communication.
All communication in XMPP is handled by the use of streaming XML, encapsulating each message in special
tags called stanzas. Two stanzas are being used in NS FRITS, the IQ stanza and the Message stanza. The
IQ stanza is used for request-response mechanisms such as function and method calls, while the Message
stanza is used for asynchronous messages, meaning messages that do not require any response. These
two basic stanzas are then extended with additional information relevant to NS FRITS.

Two classes handle the extension of IQ and Message stanzas, NSFRITSIQ.java and
NSFRITSMessageExtension.java, both inside the eu.nsfrits.server.custommessages package. These
two classes are responsible of modelling each request and response internally and serializing them to XML.

To be able to create an internal model of a request or response, the stanza first need to be parsed. For this
purpose several parsers have been written. The parsing classes can be found inside
NSFRITSIQImplementer.java, NSFRITSAlertImplementer.java, NSFRITSPositionImplementer.java and
NSFRITSUpdatesImplementer.java inside the eu.nsfrits.server.custommessages package. Each parsing
class implements either a parseIQ or a parseExtension method, which takes an XML pull parser as a
parameter (provided by the Smack Library), and returns an NSFRITSIQ or an NSFRITSMessageExtension
object.

Whenever a packet is received by the server, it is matched against the registered extensions by looking at
the namespace and tag name of the first tag inside the stanza. If a match is found, it is then sent to its
respective parser and converted into an NSFRITSIQ or an NSFRITSMessageExtenstion object.

When the server first starts it registers several listeners, each waiting for a particular packet type. The
listeners are then responsible of retrieving the content of each packet and calling the appropriate method in
the API Layer. The listeners are located in the eu.nsfrits.server.main, and named AsyncListener.java and
NSFRITSIQListener.java.

NS%20FRITS%20Data%20model

North Sea Freight and Intelligent Transport Solutions

Page: 36 / 53

API layer

The API Layers purpose is to convert requests from the XMPP layer into XML data that can be sent back in
responding packets. Since most of the data operations are handled at database level the API Layer is very
simple, only bridging requests to the corresponding DAOs in the NS FRITS Data model. The NS FRITS API
class is named NSFRITSAPI.java and can be found in the eu.nsfrits.server.api package.

Data layer

The Data Layer is handled by the NS FRITS Data model application.

Operating environment

The NS FRITS core server application is purely built with J2SE 1.6, thus supporting all platforms
implementing the Java platform.

Dependencies

The following Java Libraries are needed to run this application:

 Smack API 3.1.0 (smack.jar and smackx.jar)

Providing all XMPP communication

And the following Java projects are needed:

 NS FRITS Data model

(Note that the dependencies of NS FRITS Data model also need to be imported in this project)

Interfaces and classes including important functions

Classes

<A UML diagram that summaries the classes that constitute the application and how they relate to each
other>

External interfaces

The NS FRITS core server does not have any external interfaces.

Communication interfaces

The communication interface is described in NS FRITS system specification - API.

Software interfaces and interrelation with other applications

<Functions, parameters - how to set them, where to call the functions from and what parameters to include in
the function calls etc. Plus what the output would be if everything is okay>

User interface

The server is started running the NSFRITS-Server jar file. This is done by running the command java –jar
NSFRITS-Server.jar inside the directory of the jar file. The first argument is mandatory and is the (DNS)
name of the XMPP server. There are more optional parameters available represented by the name of the
parameter an „=‟ sign and the value of the parameter.

The parameters currently available are:

 debug=(true/false)

If debug is set to true the server will display a Smack Debug window, displaying the raw XML data of
each sent and received packet. The default value is false.

 security=(true/false)

If security is set to false, encryption of packets will be disabled, this can be useful for troubleshooting
with a packet analyzer/sniffer. The default value is true.

NS%20FRITS%20Data%20model
NS%20FRITS%20Data%20model
NS%20FRITS%20system%20specification%20-%20API.doc

North Sea Freight and Intelligent Transport Solutions

Page: 37 / 53

Fault check, diagnostics and FAQ

General tips

If the core server is not working as expected, the first thing to check should be the log. Whenever the server
runs, it will periodically check if any new subscription messages are pending. In case any exceptions are
thrown, they will be displayed in the log. Note that some exceptions might occur because of database
constraints, they should not be considered errors but instead a result of an erroneous input.

If the server fails to retrieve any results and no exceptions are shown, make sure that all imports are correct.
Another way to troubleshoot is to bypass the communications part and call the DAO functions directly by
writing a separate class, this can detect if the problem is related to XMPP/communication or the
database/data model.

Test client

The core server can be tested by a test client distributed with the server. It is located in the test package
eu.nsfrits.server.testclient. The client is started by running the Sender.java class.

Several test clients can be added by modifying the Sender.java class, while the VehicleSim.java can be
modified to control what command(s) each client executes.

North Sea Freight and Intelligent Transport Solutions

Page: 38 / 53

Appendix 6: NS FRITS system specification – Data inserter

Application description

The Data inserter application is an application used for automatic data insertion into NS FRITS from existing
data sources. The application currently supports insertion of CSV-based (Comma Separated Value) data
and (certain) XML data. Since it‟s impossible for the application to know all possible data formats around, the
application has to be adapted when a new format is added.

Application features

 Converting and inserting CSV-based data sources into NS FRITS.

 Converting and inserting XML-based data in form of AVCIS Crime Hotspots.

 Provides several CSV-patterns to simplify insertion of new data.

Justification

Many companies and data providers publish location based information in the CSV-format for commercial
GPS-applications. Information like road restaurants and petrol stations could be useful for HGV drivers, and
therefore for the NS FRITS system. This application provides a way to easily parse and convert this kind of
data into the NS FRITS format.

This application also provides a skeleton to write conversion modules for XML-based data by adapting to the
current Crime Hotspot parser.

Application design

There are two main packages in the Data inserter, eu.nsfrits.providers.main and
eu.nsfrits.providers.parsepatterns.

The eu.nsfrits.providers.main package contains runnable classes for inserting various kinds of data. At the
moment, it contains sub packages for crime hotspots, petrolstations and restaurants. Each of these sub
packages contains several runnable classes that each inserts data for a particular provider.

The eu.nsfrits.providers.parsepatterns package contains classes to simplify the parsing of CSV-based
data. The class SimpleCSVProvider is responsible of converting a CSV-file to NS FRITS format and
inserting the converted data into the database. When an instance of the SimpleCSVProvider is created, the
user needs to specify a provider, a category, a type, a language and a pattern. The next section will describe
how patterns work.

CSV Patterns

Since CSV-data exists in many different configurations, the class is instantiated with a patterntype variable.
This variable defines what kind of pattern the CSV-file follows, and how the parser should interpret it. The
advantage by using patterns is that the same pattern often reoccurs for different data providers, and can
therefore be reused.

When a new data source is identified, the data format should manually be analyzed to identify if any of the
existing patterns match the data. If so, that pattern could be used, otherwise it is possible to define a new
pattern for that data format. The more patterns added, the higher probability it is that a match will be found.

An example of a pattern is to interpret the first two fields as coordinates, the third as NS FRITS title and the
third plus the fourth as NS FRITS description. For example, this pattern would be useful for the CSV-data
below about petrol stations from the company “JET”:

12.55051,57.92909,"JET Alingsås", "E20 / Malmgatan"
12.89,56.25121,"JET Ängelholm", "Klippanvägen / Heimdallgatan"
15.88984,59.39598,"JET Arboga", "Arboga: Flygvägen 2"
12.94036,57.73055,"JET Borås/Skaraborgsvägen", "Borås: Skaraborgsvägen 32"

The result of the parser would generate InfoObjects like this (serialized to XML):

<infoobject>
 <id>37311</id>
 <provider>Jet</provider>
 <category>3</category>

North Sea Freight and Intelligent Transport Solutions

Page: 39 / 53

 <iotype>traffic-h3-1</iotype>
 <validity>
 <from>2010-07-30T09:49:29+02:00</from>
 <to>2020-07-27T09:49:29+02:00</to>
 </validity>
 <sequenceid>0</sequenceid>
 <location>
 <area>POLYGON((12.53051 57.94909,12.57051 57.94909,12.57051 57.90909,12.53051
57.90909,12.53051 57.94909))</area>
 <point>POINT (12.55051 57.92909)</point>
 </location>
 <datanode>
 <id>42710</id>
 <description>
 <title>JET Alingsås</title>
 <text>JET Alingsås E20 / Malmgatan</text>
 <language>en</language>
 </description>
 </datanode>
</infoobject>

Operating environment

The Data Inserter application is purely built with J2SE 1.6, thus supporting all platforms implementing the
Java platform.

Dependencies

The data inserter depends on the NS FRITS Data model project for database connections and helper
functions such as reverse geocoding.

The following Libraries are needed to run this project:

 OpenCSV 2.2 (opencsv-2.2.jar)

Provides support for parsing CSV-data into Java objects.

Interfaces and classes including important functions

Classes

<A UML diagram that summaries the classes that constitute the application and how they relate to each
other>

Software interfaces and interrelation with other applications

<Functions, parameters - how to set them, where to call the functions from and what parameters to include in
the function calls etc. Plus what the output would be if everything is okay>

User interface

There is no user interface for the Data inserter. However, the data inserts prints out data in XML format after
a successful parse.

Fault check, diagnostics and FAQ

Q: I get an exception, when trying to insert data from file x for provider y!

A: Make sure that the path to the file is correct and that the provider y actually exists before inserting. You
need to create the provider first from the Provider Administrator.

NS%20FRITS%20system%20specification%20-%20Data%20model.doc

North Sea Freight and Intelligent Transport Solutions

Page: 40 / 53

Appendix 7: NS FRITS system specification – Data model

Application description

The NS FRITS data model application provides an interface to modify the content of the NS FRITS
database. This application is never used as a stand alone application; instead it is used by other NS FRITS
applications such as the NS FRITS server, the NS FRITS data provider and the Data inserter.

Application features

 Provides an interface for other applications to modify the content of the NS FRITS database in an
object oriented way though Data Access Objects (DAO).

 Provides core classes modelling the content of the NS FRITS database, all serializable into JSON
and XML format.

 Provides the ability to automatically translate text and generate text-to-speech audio files using
Googles Translating services.

 Provides a reverse geocoding service from ws.geonames.org.

 Provides global project settings for other NS FRITS applications such as languages, formatting time,
translation functions, proxy settings, etc.

Justification

 By focusing all database access to one application, bugs and errors can be limited to one place.

 Outlying applications do not need to have knowledge about what database and version that is being
used. The database can be changed or moved without having to rewrite any of the other
applications.

 Since access to NS FRITS is provided though DAOs, no knowledge of SQL or any other database
language is needed to develop an application that uses the NS FRITS database.

Application design

The application is designed using the Data Access Object (DAO) design pattern. Several DAO classes are
provided, each giving access to multiple Create Read Update Delete (CRUD) methods on various parts of
the database.

The application is split into the following main packages:

 eu.nsfrits.db.dao

This package contains all DAO classes, which are used as an interface to the database.

 eu.nsfrits.db.core

This package contains all core classes, i.e. object representation of the database content.

 eu.nsfrits.db.util

This package contains utility methods and constants such as formatting time, checking if a language
is valid, proxy settings, translation, etc.

 eu.nsfrits.db.helper

This package contains methods used for reverse geocoding.

 eu.nsfrits.db.googletts

This package contains functions for text to speech conversion.

Data access objects

The DAO pattern is based on a simple class, DAO.java, which all other DAO-classes extend. To use a
function in the DAO, the DAO object must first be instantiated with the default constructor. This lets the DAO-
object fetch a connection from the database connection pool. It is important to always close the DAO object

North Sea Freight and Intelligent Transport Solutions

Page: 41 / 53

after it has been used to return the connection to the pool and avoid blocking connections for other functions.
This is best done by using a finally clause that closes the connection in case any exception is thrown.

If one wishes to use functions from several DAO-objects in the same class or function, it is possible to reuse
connections by instantiating subsequent DAOs with the same database connection. The connection of a
DAO can be fetched from the getConnection() function. If this is performed, only the initial DAO needs to be
closed after usage.

There are five different Data Access Objects available as an interface to the database:

 ProviderDAO

Contains functions related to Providers, Categories, Types, Login, etc.

 SpatialDAO

Contains functions related to spatial operations. All spatial operations are executed at database level
directly though SQL statements. This DAO only contains four public functions:

o getInfoObjectsAlongRoute, takes a username as parameter and returns all InfoObjects of
the categories specified by that user intersecting with the route set by that user.

o getInfoObjectsNearPoint, takes a username and a point as parameters and returns all
InfoObjects of the categories specified by that user intersecting with the supplied point.

o searchNClosestPOI, takes a category, point and a number, n, as parameters. It returns the n
closest InfoObjects to the specified point of the specified category.

o getAllUsersWithin, takes an InfoObject as parameter, and returns all users that are currently
within the InfoObjects area. This function only selects users that have the InfoObject‟s
category selected.

 TranslationDAO

Contains functions related to the NS FRITS Translator service. For example, adding a translator job,
getting all translator jobs or updating the translator status of a job.

 UsersDAO

Contains functions related to the NS FRITS Users, like setting user categories and routes, clearing
user history, adding/deleting user subscriptions, etc.

 ZoneDAO

Contains functions related to InfoObjects, DataNodes, Attachments, ExternalOperators,
ParameterData and Descriptions. This is the largest DAO class with the highest number of functions
available.

Text-To-Speech

One of the implemented features was converting text into speech. This feature is based on Googles text-to-
speech API but could easily be replaced with another existing text-to-speech service. The text-to-speech
function takes three arguments: A text file, the language used and a path where the file should be stored.

The workflow of the function is the following:

 Split the text that should be converted into chunks with a maximum length of 100 characters
(Google‟s API does not accept longer inputs than 100 characters).

 Call Googles API with each chunk of text. Each call results in an mp3-file containing the text-to-
speech audio of that particular text.

 Convert the downloaded mp3-files into PCM wav files, and concatenate them into one large file.

 Finally convert the result into Speex (An open low sized audio format specialized for voice encoding)
and store at the location received as an argument.

North Sea Freight and Intelligent Transport Solutions

Page: 42 / 53

Reverse geocoding

The NS-FRITS datamodel application also provides reverse geocoding based on a web service from the free
geocoding service: Geonames.org. Reverse geocoding is the process of transforming a geographical
coordinate into a string address.

The geocoding service is available from the following url:

http://ws.geonames.org/findNearbyPostalCodes?lat=57.7&lng=12

Where the lat and lng variables are replaced with the coordinates latitude and longitude values. The service
then replies in an XML format, which is parsed for the result.

The publicly available function is named coordinatetoAddress inside the ReverseGeoCoder class in the
eu.nsfrits.db.helper package. It takes a point and a connection as parameters and returns a string of the
reversely geocoded location. If the reverse geocoding process fails, the function instead returns the
coordinates as a string.

Operating environment

The core function of the application is purely built by using J2SE 1.6, thus supporting all platforms
implementing the Java platform. The only function not platform independent is the text to speech function,
which uses external operating system commands to move files.

Dependencies

The following Java Libraries are needed to run the core functionality of this application:

 Java Topology Suite 1.1 (jts-1.11.jar)

A library providing spatial operations to Java.

 Google Translation API (google-api-translate-java-0.92.jar)

A library wrapping Googles AJAX API for text translation.

 JSON-Simple (json_simple.jar)

A simple toolkit for building JSON-objects from Java.

 PostgreSQL JDBC (postgresql-8.4-701.jdbc4.jar)

A JDBC driver for the PostgreSQL database that is being used.

 c3p0 JDBC DataSources/Resource Pool (c3p0-0.9.1.2.jar)

Library for database connection pooling.

And the following are needed for text to speech:

 JLayer 1.0 (jl1.0.jar)

A library used for converting mp3 files into PCM wav.

 JSpeex (jspeex.jar)

Converting PCM wav into speex (the audio format used in NS FRITS).

Interfaces and classes including important functions

Classes

Class diagram over the core objects: Datamodel class diagram

Class diagram over all DAOs: DAO class diagram

http://ws.geonames.org/findNearbyPostalCodes?lat=57.7&lng=12
datamodel_class%20diagram.pdf
dao_class_diagram.pdf

North Sea Freight and Intelligent Transport Solutions

Page: 43 / 53

External interfaces

Other applications uses the NS FRITS data model by first instancing the appropriate DAO object, then using
the public functions inside the object to call the wanted method(s).

Communication interfaces

The NS FRITS data model does not support any external/network communication.

Software interfaces and interrelation with other applications

<Functions, parameters - how to set them, where to call the functions from and what parameters to include in
the function calls etc. Plus what the output would be if everything is okay>

User interface

The NS FRITS data model has no user interface.

Fault check, diagnostics and FAQ

Q: The Text-to-speech feature does not work, how do I get it running?

A: Make sure the library and temp path are correct in the TextToSpeech.java class in the
eu.nsfrits.db.googletts package. Also make sure that the proxy is correctly configured if you are using any,
check the ProxySettings file in the eu.nsfrits.db.util package.

Q: None of the DAO-functions work, what is the problem?

A: Make sure that the address of the database is configured correctly in the Configurations.java class
inside the eu.nsfrits.db.util package. Also make sure that the database is accessible from another interface
such as the pgAdmin for postgres.

North Sea Freight and Intelligent Transport Solutions

Page: 44 / 53

Appendix 8: NS FRITS system specification – Data provider

Application description

The NS FRITS Data provider application is the application used by independent data providers to insert data
into NS FRITS. It is deployed as a web application, where each data provider can log in into their respective
account (An account must in before hand be created from the NS FRITS Provider administrator).When
logged in, all information entities created by that provider will be displayed on a map. The data provider can
also create new information entities or modify existing ones by clicking on the map.

Each information entity contains multiple data nodes structured as tree where each data node contains a
title, a text description. It is also possible to upload files from interface, which can be attached to data nodes.
Furthermore a data provider can specify a time interval for the information entity, add parameter data such
as free parking spots or temperature, and add a link to an NS FRITS Agreement service. Application
features

Application features

 Viewing information entities on a map.

 Creating/Deleting information entities.

 Modify the content of an information entity.

 Uploading files to an information entity.

 Adding an URL link to an information entity.

 Specifying an area to an information entity.

 Specifying a validity of an information entity.

 Adding an address to an Agreement Operator to an information entity

 Adding one or more parameter data to an information entity.

 Specifying a category of an information entity.

 Specifying an icon type of an information entity.

 Filtering so only information entities of a certain category should be displayed on the map.

Justification

This application is useful for independent data provider, i.e. smaller data providers that do not have any
existing data source and only wishes to publish one or a few information entities in the NS FRITS system.
They can use this application to easily create or update information and share it through the NS FRITS
system.

Application design

The design of the data provider application is divided into two parts, the frontend and the backend. The
frontend is written in a combination of JavaScript, CSS and HTML, while the backend is based on the Java
Servlet API (J2EE).

The frontend

The frontend is mainly based on AJAX technologies so everything is displayed in one single HTML page,
which is updated with JavaScript. All JavaScript are located in the web/js folder while the main page is
located in web/zoneedit.jsp. A second file, web/login.jsp, is used for login in. Note that since the
application is only a prototype, no security issues have been taken into account while designing the login
feature.

For map support the JavaScript library, OpenLayers, is being used. It supports maps from several different
providers, but currently the free map service OpenStreetMaps is being used. Several other JavaScript
libraries are being used for various functions, Prototype is being used for AJAX-calls, Uploadify for file
uploads and YUI for the icon tree.

NS%20FRITS%20system%20specification%20-%20Provider%20administrator.doc
NS%20FRITS%20system%20specification%20-%20Agreement%20service.doc

North Sea Freight and Intelligent Transport Solutions

Page: 45 / 53

When the user interacts with the GUI, the appropriate Servlet is called from the backend by a JavaScript.
The backend will then perform the wanted action and return the response in the JSON-format, which then is
parsed by the client side JavaScript. Finally the GUI is updated by the JavaScript with DHTML actions.

The backend

The backend consists of several Java Servlets located in the eu.nsfrits.admin.servlets package. The
Servlets then use the NS FRITS - Data model application to access its DAO function to query the NS FRITS
database. The results are then converted to JSON format before being returned to the frontend.

Unlike the Core Server application, the database connection pooling is not handled by the NS FRITS - Data
model. Instead the connection pooling is declared in the projects web.xml file as a JNDI (Java Naming
Directory Interface), so all servlets in the entire web application share the same connection pool.

Operating environment

The server can be run in any environment supporting Apache Tomcat. The application was tested version
6.0.20, but other version should probably work too.

The frontend requires the use of a web browser with JavaScript activated, currently the interface have been
tested with Google Chrome 5.0.375, Safari 5.0.1 and Firefox 3.6.8.

Dependencies

The following libraries are needed to run the application.

 Commons FileUpload (commons-fileupload-1.2.1.jar and commons-io-1.4.jar)

Used for handling file upload at the server side.

 JSON Simple (json_simple.jar)

Library for parsing strings to JSON Objects and vice versa.

 c3p0 JDBC DataSources/Resource Pool (c3p0-0.9.1.2.jar)

Library used for database connection pooling.

The following projects are needed to run the application:

 NS FRITS - Data model

Interfaces and classes including important functions

Classes

<A UML diagram that summaries the classes that constitute the application and how they relate to each
other>

External interfaces

The Data provider application does not have any external interfaces.

Communication interfaces

The Data provider application does not have any communication interfaces.

Software interfaces and interrelation with other applications

<Functions, parameters - how to set them, where to call the functions from and what parameters to include in
the function calls etc. Plus what the output would be if everything is okay>

User interface

This section will be summarized in a series of screenshots, each describing use cases of the application.

NS%20FRITS%20system%20specification%20-%20Data%20model.doc
NS%20FRITS%20system%20specification%20-%20Data%20model.doc

North Sea Freight and Intelligent Transport Solutions

Page: 46 / 53

The provider logs in with its NS FRITS username and password. If correct, it will be redirected to its Provider
page.

The provider can now view each information entity it has created on the map; they are displayed as yellow
round circles. In the top bar, the provider can choose to add new information entities, delete the selected
information entity or delete all created information entities.

The checkboxes to the right displays what categories are being displayed right now. In this example, the
provider has access of creating information entities in the Customs Information and Crime Hotspot category.

North Sea Freight and Intelligent Transport Solutions

Page: 47 / 53

The data provider selects an information entity by clicking it on the map, all information bound to it will then
be displayed under the map. In the left box all data nodes are displayed in a tree structure, while in the right
box the information of the current object is displayed. A data provider can then click any node in the tree to
display its containing data.

By using the Draw area button, a data provider can specify what area the information entity covers.

North Sea Freight and Intelligent Transport Solutions

Page: 48 / 53

When a node in the tree is selected, the text bound to it will be displayed in all different languages it has
been entered in.

By pressing the „Edit Attachment‟ button, the provider can upload files or attach web links to a data node.

North Sea Freight and Intelligent Transport Solutions

Page: 49 / 53

Appendix 8: NS FRITS system specification – DATEX connector

Application description

The DATEX Connecter is an application that periodically connects to a DATEX II source, fetches data from
it, converts the DATEX II data into the NS FRITS format, and finally inserts it into the NS FRITS database.
This application has specifically been developed to function with DATEX data from the National Traffic
Control Center (NTCC) in the UK, but the application should be adaptable to fit any other DATEX II provider
fairly easily.

Application features

 Parse DATEX II files and convert them into the NS FRITS format.

 Runnable as a service that periodically fetches DATEX II and filters out data that has not yet been
inserted.

 Mechanisms to detect erroneous content from DATEX II providers, to avoid corrupting the NS FRITS
database.

 Ability to fetch compressed data to avoid unnecessary traffic.

 Remove entries in NS FRITS as their validity date expires.

Justification

Today many European countries use the DATEX II standard for publishing information about traffic
disturbance, road maintenance work, resting places and road weather. Since this type of data has been
identified to be crucial for the NS FRITS system, an application fetching and parsing DATEX II data is
needed.

Application design

The application is based on three projects, the NSFRITS-RoadAdministrationConnect, the NSFRITS-
DATEXParser, and the NSFRITS-Datamodel. The RoadAdministrationConnect project is responsible of
fetching the actual data from the data source. The DATEXParser project is responsible of parsing the data,
finding out if it is already inserted, and if not - converting the data into the NS FRITS format. The Datamodel
project is finally responsible of inserting the new data into the database.

Fetching the data

The DATEX II data source keeps the data split up into different categories, each containing information
about events for that particular subject. Examples of categories are: CurrentRoadworks, CurrentPlanned and
UnplannedEvents. Each category consists of two XML files; Content.xml and Metadata.xml. The Content.xml
file contains the payload of all events (also called situations) in that category, while the Metadata.xml only
contains timestamps of the last time this category was updated with new situations.

The main class responsible of fetching the data is located in the eu.nsfrits.datexpuller package and called
DatexConnecter.java. This application consists of an infinite loop that every third minute fetches the
Metadata.xml for each category to check if any new DATEX II situations have been added. This is done by
keeping a time stamp of each category‟s latest update time in memory. If the timestamp in the fetched
Metadata.xml is the same as the one in memory, no situations have been added since the last update so the
application moves on to the next category. If the timestamp instead have a newer value, then one or more
situations have been added since the last update, so the new Content.xml file for that category is fetched.

To be able to know what situations that already have been loaded, the application uses a hashmap that
maps loaded situations to their NS FRITS InfoObject id. This map is also persisted to a database using a
write-through technique to be able to handle application restarts without having to reload all entries. When
the application starts a reference to this hashmap is sent to the parser.

Parsing and converting

Each time a new Content.xml file is fetched it is sent to the parsing class, which is responsible of parsing the
XML and inserting new objects into the NS FRITS database. The parsing method is based on w3c‟s DOM
(Document Object Model) parser.

North Sea Freight and Intelligent Transport Solutions

Page: 50 / 53

When the parser has loaded the XML document, it fetches the id attribute of all situation tags. The ids are
then matched against the hashmap described in 0 to see if the situation has already been loaded. If so, that
id is skipped. The parser also utilizes an ignore list to skip objects that for some reason are faulty, for
example if their validity have expired or have duplicated content with another situation.

If the parser discovers a new situation, it will run its parsing routing on the inner tags of the situation. The
parsing routine is written based on examination of the raw data, where the most important types and values
are selected. The values are then converted into an NS FRITS InfoObject and added to a list together with
its situation. When the parser has gone through each situation, this list is sent to the Data Inserter Module.

Inserting the data

The Data Inserter receives a list of InfoObjects from the parser, for each entry in the list it inserts the object
into the database. If the insert is successful, it also adds the situation with the corresponding InfoObject id to
the situations-hashmap.

Operating environment

This application is runnable on any system supporting the Java Virtual Machine and JRE 1.6.

Dependencies

The following libraries are needed:

 PostgreSQL JDBC (postgresql-8.4-701.jdbc4.jar)

A JDBC driver for the PostgreSQL database that is being used.

 c3p0 JDBC DataSources/Resource Pool (c3p0-0.9.1.2.jar)

Library for database connection pooling.

The following projects are needed:

 NS FRITS - Data model

Interfaces and classes including important functions

Classes

A class diagram of the containing classes of the application can be found here: DATEX Connecter
classdiagram

Software interfaces and interrelation with other applications

<Functions, parameters - how to set them, where to call the functions from and what parameters to include in
the function calls etc. Plus what the output would be if everything is okay>

User interface

This application does not have any user interface, but when running it prints log data onto the standard
output.

Fault check, diagnostics and FAQ

<If the application is not doing what it should be doing, what would be some typical diagnostic elements to
look out for?>

NS%20FRITS%20system%20specification%20-%20Data%20model.doc
datex2_parser_classes.pdf
datex2_parser_classes.pdf

North Sea Freight and Intelligent Transport Solutions

Page: 51 / 53

Appendix 9: NS FRITS system specification – Provider administrator

Application description

The NS FRITS Provider Administrator application is an application that allows creating, listing, updating and
deleting of providers and categories. Like the provider interface, the provider administrator is deployed as a
web application.

Application features

 Create/delete categories.

 Add descriptions to categories.

 Create/Delete providers

 Set login username/password for providers.

 Set what categories each provider is allowed to create information objects in.

 Create/Read/Update/Delete information objects for each provider.

Justification

This application is useful by the administrators of NS FRITS to be able to add new providers into the system
without manually having to edit the database.

Application design

See NS FRITS - Data provider.

Operating environment

See NS FRITS - Data provider.

Dependencies

See NS FRITS - Data provider.

Interfaces and classes including important functions

Classes

<A UML diagram that summaries the classes that constitute the application and how they relate to each
other>

External interfaces

The Provider administrator application does not have any external interfaces.

Communication interfaces

The Provider administrator application does not have any communication interfaces.

Software interfaces and interrelation with other applications

<Functions, parameters - how to set them, where to call the functions from and what parameters to include in
the function calls etc. Plus what the output would be if everything is okay>

User interface

This section will be summarized in a series of screenshots, each describing use cases of the application.

North Sea Freight and Intelligent Transport Solutions

Page: 52 / 53

When the provider administrator is started, the user can either select a provider from the menu to the left to
start editing its content, choose to create a new provider by the “Create Provider” button or manage the
categories in NS FRITS with the “Manage Categories” button.

By selecting a provider, the administrator can setup that particular provider‟s username and password. It is
also possible to check what categories the provider is allowed to edit. By pressing the “Edit Zones” button,
the administrator can view and edit all InfoObjects for that provider.

The “Create Provider” button allows new providers to be created and added into the NS FRITS system.

North Sea Freight and Intelligent Transport Solutions

Page: 53 / 53

The “Manage Categories” section lists all current categories in the left menu and allows categories to be
added and deleted by the “Add Category” and “Delete Category” buttons.

By selecting a category, it is possible to edit the description of that category and add new descriptions in
other languages.

